Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 8
CPA-secure Encryption from PRF
CPA-security (recall)

Experiment $\text{PrivK}_{A,\Pi}^{\text{cpa}}(n)$

Fix Π, A. Define a randomized experiment $\text{PrivK}_{A,\Pi}^{\text{cpa}}(n)$:

- $k \leftarrow \text{Gen}(1^n)$
- $A(1^n)$ interacts with an encryption oracle $\text{Enc}_k(\cdot)$, and then outputs m_0, m_1 of the same length
- $b \leftarrow \{0, 1\}$, $c \leftarrow \text{Enc}_k(m_b)$, give c to A
- A can continue to interact with $\text{Enc}_k(\cdot)$
- A outputs b'; A succeeds if $b = b'$, and the experiment evaluates to 1 in this case
Security Against Chosen-plaintext Attacks

\(\Pi \) is secure against chosen-plaintext attacks (CPA-secure) if for all PPT attackers \(A \), there is a negligible function \(\epsilon \) such that

\[
\Pr[\text{PrivK}_{A, \Pi}^{\text{cpa}}(n) = 1] \leq \frac{1}{2} + \epsilon(n)
\]
EAV-secure Encryption (POTP) (recall)

- Solves OTP limitation 1 (key as long as the message)
- Not solve OTP limitation 2 (key used only once)
- EAV-secure, but **not** CPA-secure
CPA-secure Encryption
CPA-secure Encryption

- Not solve OTP limitation 1 (key as long as the message)
- Solves OTP limitation 2 (key used only once)
- \(\implies \) CPA-secure \(\implies \) EAV-secure
CPA-secure Encryption (Formal)

Encryption Scheme Π

Let F be a length-preserving keyed function.

- **Gen**(1^n): choose a uniform key $k \in \{0, 1\}^n$
- **Enc$_k$**(m), where $|m| = |k| = n$:
 - Choose uniform $r \in \{0, 1\}^n$ (nonce/initialization vector)
 - Output ciphertext $\langle r, F_k(r) \oplus m \rangle$
- **Dec$_k$**(c_1, c_2): output $c_2 \oplus F_k(c_1)$
- Correctness is immediate

- The key is as long as the message...
- ...but the same key can be used to securely encrypt multiple messages
<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>If F is a pseudorandom function, then Π is CPA-secure</td>
</tr>
</tbody>
</table>

\implies proof by reduction
Proof by Reduction

Reduction A'

Instance x of problem X

Instance of scheme II

“Break”

Solution to x
Proof by Reduction

High level

- Attacker A attacks Π (as was defined)
- Design distinguisher D that uses A as a subroutine to attack the PRF F
 - i.e. D tries to distinguish F from a random function (RF)
- D simulates to A the steps in the $\text{PrivK}_{A,\Pi}^{\text{cpa}}(n)$ experiment for F and for a RF
- Relate the success \Pr of A to the success \Pr of D
- If A succeeds \implies D succeeds \implies $F \neq \text{PRF}$
- contradicts F PRF \implies A can not succeed \implies Π CPA-secure
The Reduction
The Reduction
The Reduction

PR/random
The Reduction

\[A \] interacts with an encryption oracle simulated by \(D \)
The Reduction

A interacts with an encryption oracle simulated by D
A interacts with an encryption oracle simulated by D
The Reduction

A interacts with an encryption oracle simulated by D
The Reduction

\[A \text{ interacts with an encryption oracle simulated by } D \]
The Reduction

\[A \text{ interacts with an encryption oracle simulated by } D \]
The Reduction

A outputs two messages m_0, m_1
The Reduction

\[D \text{ simulates the encryption oracle for } m_b \]
The Reduction

\[D \text{ simulates the encryption oracle for } m_b \]
The Reduction

\[D \text{ simulates the encryption oracle for } m_b \]
The Reduction

\(D \) simulates the encryption oracle for \(m_b \)
The Reduction

D simulates the encryption oracle for m_b
The Reduction

\[A \text{ outputs its result } b' \]
The Reduction

\[D \text{ outputs 1 if } b = b' \]
CPA-security Proof

High level

- Replace F_k with a random function f and denote the modified scheme $\tilde{\Pi}$
- Whenever f is evaluated on a new input, the result is uniform and independent of everything else
- Prove security assuming f is never evaluated on the same input twice
- Argue that f is never evaluated on the same input except with negligible probability
The Distinguisher D Using A as a Subroutine

D simulates to A the steps in the $\text{PrivK}_{A,\Pi}^{\text{cpa}}(n)$ and $\text{PrivK}_{A,\Pi}^{\text{cpa}}(n)$ experiments

World 0: D simulates $\text{PrivK}_{A,\Pi}^{\text{cpa}}(n)$

- D is given access to a RF $f \in \mathcal{F}_n$
- As if A is interacting with the OTP

World 1: D simulates $\text{PrivK}_{A,\Pi}^{\text{cpa}}(n)$

- D is given access to the PRF F_k
- As if A is interacting with Π
World 0: D with a Truly Random Function

D^f simulates $\text{PrivK}_{A,\tilde{\Pi}}^{\text{cpa}}(n)$ for $A(1^n)$ (truly random f)

- A interacts with O for $i = 1, 2, \ldots, q(n)$: choose m_i
- Simulation:
 1. D generates $r_i \leftarrow \{0, 1\}^n$
 2. D queries f on r_i: gets $f(r_i)$
 3. D computes $c_i = m_i \oplus f(r_i)$; sends (r_i, c_i) to A
- A outputs (m_0, m_1)
- Simulation:
 1. D generates $b \leftarrow \{0, 1\}$
 2. D generates $r_c \leftarrow \{0, 1\}^n$; gets $f(r_c)$
 3. D computes $c = m_b \oplus f(r_c)$; sends (r_c, c) to A
- A continues to interact with O
- $b' \leftarrow A(c)$
- If $b = b'$ then $D(y) = 1$
World 0: \(D \) with a Truly Random Function

\(D \) simulates \(\text{PrivK}_{A,\Pi}^{\text{cpa}} \) for \(A \)

Let \(r_c \) be the random value used in generating the challenge ciphertext \(c \):

\[
c = \tilde{E}_k(m_b) = m_b \oplus f(r_c)
\]

Two cases

1. \(r_c \) was used in at least one previous query of \(A \) (event Repeat)
2. \(r_c \) was used in none of the previous queries of \(A \)
World 0: D with a Truly Random Function

Case 1: r_c used before (Repeat)

- A has a pair (m', c') s.t. $c' = m' \oplus f(r_c)$
- A computes $f(r_c) = m' \oplus c'$
- A computes $m_b = c \oplus f(r_c)$
- A succeeds with

$$\Pr[\text{PrivK}_{A, \pi}^{\text{cpa}}(n) = 1] = 1$$
Case 2: \(r_c \) not used before (\(\neg \text{Repeat} \))

- \(r_c \) random \(\implies \) \(f(r_c) \) random
- \(A \) learns nothing from its interaction with \(f \)
- \(\implies \) \(\widetilde{E}_k(m_b) = m_b \oplus f(r_c) \) is equivalent to OTP
- \(A \) succeeds with

\[
\Pr[\text{PrivK}_{A,\Pi}^{\text{cpa}}(n) = 1] = \Pr[\text{PrivK}_{A,\text{OTP}} = 1] = \frac{1}{2}
\]
World 0: \(D \) with a Truly Random Function

Pr[Repeat] and Pr[\(\neg \)Repeat]

- \(A \) is PPT \(\implies \) \(A \) can make at most \(q(n) \) polynomial number of queries

- As \(r_c \) is chosen uniformly, it follows that

\[
\Pr[\text{Repeat}] = \frac{q(n)}{2^n}
\]

\[
\Pr[\neg \text{Repeat}] = 1 - \frac{q(n)}{2^n} = 1 - \text{negl} \approx 1
\]
World 0: D with a Truly Random Function

$$\text{Pr}[\text{PrivK}_{A,\tilde{\Pi}}^{\text{cpa}}(n) = 1]$$

\[
\begin{align*}
\text{Pr}[\text{PrivK}_{A,\tilde{\Pi}}^{\text{cpa}}(n) = 1] & \\
\overset{LTP}{=} & \text{Pr}[(\text{PrivK}_{A,\tilde{\Pi}}^{\text{cpa}}(n) = 1) \land \text{Repeat}] + \\
& \text{Pr}[(\text{PrivK}_{A,\tilde{\Pi}}^{\text{cpa}}(n) = 1) \land \neg\text{Repeat}] \\
\overset{\text{Cond.P.}}{=} & \text{Pr}[(\text{PrivK}_{A,\tilde{\Pi}}^{\text{cpa}}(n) = 1)|\text{Repeat}] \text{ Pr}[\text{Repeat}] + \\
& \text{Pr}[(\text{PrivK}_{A,\tilde{\Pi}}^{\text{cpa}}(n) = 1)|\neg\text{Repeat}] \text{ Pr}[\neg\text{Repeat}] \\
\leq & \text{Pr}[\text{Repeat}] + \text{Pr}[(\text{PrivK}_{A,\tilde{\Pi}}^{\text{cpa}}(n) = 1)|\neg\text{Repeat}] \\
= & \frac{q(n)}{2^n} + \frac{1}{2}
\end{align*}
\]
World 1: D with a Pseudorandom Function

D^{F_k} simulates $\text{PrivK}_{A,\Pi}^{\text{cpa}}(n)$ for $A(1^n)$ (pseudorandom F_k)

- A interacts with \mathcal{O} for $i = 1, 2, \ldots, q(n)$: choose m_i
- Simulation:
 1. D generates $r_i \leftarrow \{0, 1\}^n$
 2. D queries F_k on r_i: gets $F_k(r_i)$
 3. D computes $c_i = m_i \oplus F_k(r_i)$; sends (r_i, c_i) to A
- A outputs (m_0, m_1)
- Simulation:
 1. D generates $b \leftarrow \{0, 1\}$
 2. D generates $r_c \leftarrow \{0, 1\}^n$; gets $F_k(r_c)$
 3. D computes $c = m_b \oplus F_k(r_c)$; sends (r_c, c) to A
- A continues to interact with \mathcal{O}
- $b' \leftarrow A(c)$
- If $b = b'$ then $D(y) = 1$
World 1: D with a Pseudorandom Function

D simulates $\text{PrivK}_{A,\Pi}^{\text{cpa}}$ for A

The Pr with which A succeeds in this case is

$$\Pr[\text{PrivK}_{A,\Pi}^{\text{cpa}}(n) = 1]$$

Note

This is the Pr that we want to bound!
Proof.

By the assumption that F is a PRF $\exists \epsilon(n) = \text{negl}$:

$$|\Pr_{k \leftarrow \{0,1\}^n}[D^F_k(\cdot) = 1] - \Pr_{f \leftarrow F_n}[D^f(\cdot) = 1]| \leq \epsilon(n)$$

By the simulation of $\text{PrivK}_{A,\Pi}^{\text{cpa}}(n)$ by D^f:

$$\Pr_{f \leftarrow F_n}[D^f(\cdot) = 1] = \Pr[\text{PrivK}_{A,\Pi}^{\text{cpa}}(n) = 1] = \frac{q(n)}{2^n} + \frac{1}{2}$$

By the simulation of $\text{PrivK}_{A,\Pi}^{\text{cpa}}(n)$ by D^{F_k}:

$$\Pr_{k \leftarrow \{0,1\}^n}[D^{F_k}(\cdot) = 1] = \Pr[\text{PrivK}_{A,\Pi}^{\text{cpa}}(n) = 1]$$
Proof.

Therefore

\[
\Pr[\text{PrivK}_{A,\Pi}^{\text{cpa}}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^n} + \epsilon(n)
\]

\[= \frac{1}{2} + \text{negl}(n)\]

\[\implies \Pi \text{ is CPA-secure.} \]
Real-world Security?

- What happens if a nonce r is ever reused?
- What happens to the bound if the nonce is chosen non-uniformly?
Attacks?

Nonce r not used correctly

- If r repeats, security fails
 - Exactly analogous to multiple encryptions using the (pseudo)one-time pad scheme
- When r is a uniform, n-bit string, the probability of a repeat is **negligible**
- If r is too short, or is chosen from another distribution, repeats may happen
 - May make scheme insecure
Attacks?

<table>
<thead>
<tr>
<th>F not used correctly</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ (Function of) plaintext directly leaked in ciphertext</td>
</tr>
<tr>
<td>e.g. $\langle m, F_k(m) \rangle$</td>
</tr>
<tr>
<td>▶ F not used with a random, unknown key</td>
</tr>
<tr>
<td>e.g. $\text{Enc}_k(m) = \langle r, F_r(m) \rangle$</td>
</tr>
</tbody>
</table>
CPA-secure Encryption Summary

Practical CPA-secure Scheme

We have shown a CPA-secure encryption scheme based on any PRF:

\[
\text{Enc}_k(m) = \langle r, F_k(r) \oplus m \rangle
\]

Drawbacks?

- A 1-block plaintext results in a 2-block ciphertext
- Only defined for encryption of \(n\)-bit messages
- (Both key and message of length \(n\) i.e. OTP limitation 1)
- Solution: Modes of Operation (next lecture!)
End

Reference: Section 3.5.2