Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 8

CPA-secure Encryption from PRF

CPA-security (recall)

Experiment $\mathsf{PrivK}^{cpa}_{A,\Pi}(n)$

Fix Π , A. Define a randomized experiment $\mathsf{PrivK}_{A,\Pi}^{\mathsf{cpa}}(n)$:

- ▶ $k \leftarrow \operatorname{Gen}(1^n)$
- $A(1^n)$ interacts with an encryption oracle $\mathsf{Enc}_k(\cdot)$, and then outputs m_0, m_1 of the same length
- $\blacktriangleright \ b \leftarrow \{0,1\}, c \leftarrow \mathsf{Enc}_k(m_b), \, \text{give } c \text{ to } A$
- A can continue to interact with $\mathsf{Enc}_k(\cdot)$
- A outputs b'; A succeeds if b = b', and the experiment evaluates to 1 in this case

Security Against Chosen-plaintext Attacks

 Π is secure against chosen-plaintext attacks (CPA-secure) if for all PPT attackers A, there is a negligible function ϵ such that

$$\Pr[\mathsf{PrivK}^{\mathrm{cpa}}_{A,\Pi}(n)=1] \leq rac{1}{2} + \epsilon(n)$$

EAV-secure Encryption (POTP) (recall)

► Solves OTP limitation 1 (key as long as the message)

- ▶ Not solve OTP limitation 2 (key used only once)
- ► EAV-secure, but **not** CPA-secure

CPA-secure Encryption

CPA-secure Encryption

▶ Not solve OTP limitation 1 (key as long as the message)

- ► Solves OTP limitation 2 (key used only once)
- $\blacktriangleright \implies$ CPA-secure \implies EAV-secure

CPA-secure Encryption (Formal)

Encryption Scheme Π

Let ${\boldsymbol{F}}$ be a length-preserving keyed function.

- Gen (1^n) : choose a uniform key $k \in \{0, 1\}^n$
- $\mathsf{Enc}_k(m)$, where |m| = |k| = n:
 - Choose uniform $r \in \{0,1\}^n$ (nonce/initialization vector)
 - Output ciphertext $\langle r, F_k(r) \oplus m \rangle$
- $\mathsf{Dec}_k(c_1, c_2)$: output $c_2 \oplus F_k(c_1)$
- ► Correctness is immediate

- ▶ The key is as long as the message...
- ...but the same key can be used to securely encrypt multiple messages

Security?

Theorem

If F is a pseudorandom function, then Π is CPA-secure

 \implies proof by reduction

Proof by Reduction

IMC Textbook 2nd ed. CRC Press 2015

Proof by Reduction

High level

- Attacker A attacks Π (as was defined)
- \blacktriangleright Design distinguisher D that uses A as a subroutine to attack the PRF F

▶ i.e. D tries to distinguish F from a random function (RF)

- ► **D** simulates to **A** the steps in the $\mathsf{PrivK}^{cpa}_{A,\Pi}(n)$ experiment for **F** and for a RF
- \blacktriangleright Relate the success \mathbf{Pr} of \boldsymbol{A} to the success \mathbf{Pr} of \boldsymbol{D}
- If A succeeds $\implies D$ succeeds $\implies F \neq PRF$
- contradicts $F \text{ PRF} \implies A$ can not succeed $\implies \Pi$ CPA-secure

PR/random

PR/random

 \boldsymbol{A} interacts with an encryption oracle simulated by \boldsymbol{D}

PR/random

 ${\boldsymbol A}$ interacts with an encryption oracle simulated by ${\boldsymbol D}$

PR/random

$m{A}$ outputs two messages m_0, m_1

D simulates the encryption oracle for m_b

D simulates the encryption oracle for m_b

 $m{D}$ simulates the encryption oracle for $m{m_b}$

D simulates the encryption oracle for m_b

D simulates the encryption oracle for m_b

A outputs its result b'

D outputs 1 if b = b'

CPA-security Proof

High level

- ▶ Replace F_k with a random function f and denote the modified scheme $\widetilde{\Pi}$
- Whenever f is evaluated on a new input, the result is uniform and independent of everything else
- \blacktriangleright Prove security assuming f is never evaluated on the same input twice
- Argue that f is never evaluated on the same input except with negligible probability

The Distinguisher D Using A as a Subroutine

D simulates to A the steps in the $\mathsf{PrivK}^{\mathsf{cpa}}_{A,\widetilde{\Pi}}(n)$ and $\mathsf{PrivK}^{\mathsf{cpa}}_{A,\Pi}(n)$ experiments

World 0: D simulates $\mathsf{PrivK}^{\mathsf{cpa}}_{A,\widetilde{\Pi}}(n)$

▶ D is given access to a RF $f \in \mathcal{F}_n$

• As if A is interacting with the OTP

World 1: D simulates $\mathsf{Priv}\mathsf{K}^{\mathsf{cpa}}_{A,\Pi}(n)$

- ▶ **D** is given access to the PRF F_k
- As if A is interacting with Π

D^f simulates $\mathsf{PrivK}^{\mathrm{cpa}}_{A,\widetilde{\Pi}}(n)$ for $A(1^n)$ (truly random f)

- A interacts with $\mathcal O$ for $i=1,2,\ldots,q(n)$: choose m_i
- ► Simulation:
 - 1. D generates $r_i \leftarrow \{0, 1\}^n$
 - 2. **D** queries f on r_i : gets $f(r_i)$
 - 3. *D* computes $c_i = m_i \oplus f(r_i)$; sends (r_i, c_i) to *A*
- A outputs (m_0, m_1)
- ► Simulation:
 - 1. D generates $b \leftarrow \{0, 1\}$
 - 2. D generates $r_c \leftarrow \{0, 1\}^n$; gets $f(r_c)$
 - 3. *D* computes $c = m_b \oplus f(r_c)$; sends (r_c, c) to *A*
- A continues to interact with \mathcal{O}
- $\blacktriangleright \ b' \leftarrow A(c)$
- If b = b' then D(y) = 1

D simulates $\mathsf{Priv}\mathsf{K}^{\mathbf{cpa}}_{A,\widetilde{\Pi}}$ for A

Let r_c be the random value used in generating the challenge ciphertext c:

$$c = \widetilde{E}_k(m_b) = m_b \oplus f(r_c)$$

Two cases

- 1. r_c was used in **at least one** previous query of A (event Repeat)
- 2. $\boldsymbol{r_c}$ was used in **none** of the previous queries of \boldsymbol{A}

Case 1: r_c used before (Repeat)

- A has a pair (m',c') s.t. $c' = m' \oplus f(r_c)$
- A computes $f(r_c) = m' \oplus c'$
- A computes $m_b = c \oplus f(r_c)$
- \blacktriangleright **A** succeeds with

$$\Pr[\mathsf{PrivK}^{\mathrm{cpa}}_{A,\widetilde{\Pi}}(n)=1]=1$$

Case 2: r_c not used before (¬Repeat)

 \blacktriangleright r_c random \implies $f(r_c)$ random

• A learns nothing from its interaction with f

$$\blacktriangleright \implies \widetilde{E}_k(m_b) = m_b \oplus f(r_c)$$
 is equivalent to OTP

• A succeeds with

$$\Pr[\mathsf{PrivK}^{\mathrm{cpa}}_{A,\widetilde{\Pi}}(n)=1]=\Pr[\mathsf{PrivK}_{A,OTP}=1]=rac{1}{2}$$

$\Pr[\texttt{Repeat}] \text{ and } \Pr[\neg\texttt{Repeat}]$

- A is PPT $\implies A$ can make at most q(n) polynomial number of queries
- $\blacktriangleright\,$ As r_c is chosen unifromly, it follows that

$$\Pr[ext{Repeat}] = rac{q(n)}{2^n}$$
 $\Pr[\neg ext{Repeat}] = 1 - rac{q(n)}{2^n} = 1 - ext{negl} pprox 1$

$$\Pr[\mathsf{PrivK}^{\mathrm{cpa}}_{A,\widetilde{\Pi}}(n)=1]$$

$$\begin{split} &\Pr[\mathsf{PrivK}_{A,\widetilde{\Pi}}^{\mathrm{cpa}}(n)=1] \\ \stackrel{LTP}{=} \Pr[(\mathsf{PrivK}_{A,\widetilde{\Pi}}^{\mathrm{cpa}}(n)=1) \land \mathtt{Repeat}] + \\ &\Pr[(\mathsf{PrivK}_{A,\widetilde{\Pi}}^{\mathrm{cpa}}(n)=1) \land \neg \mathtt{Repeat}] \\ \stackrel{Cond.P.}{=} \Pr[(\mathsf{PrivK}_{A,\widetilde{\Pi}}^{\mathrm{cpa}}(n)=1) | \mathtt{Repeat}] \Pr[\mathtt{Repeat}] + \\ &\Pr[(\mathsf{PrivK}_{A,\widetilde{\Pi}}^{\mathrm{cpa}}(n)=1) | \neg \mathtt{Repeat}] \Pr[\neg \mathtt{Repeat}] \\ &\leq \Pr[\mathtt{Repeat}] + \Pr[(\mathsf{PrivK}_{A,\widetilde{\Pi}}^{\mathrm{cpa}}(n)=1) | \neg \mathtt{Repeat}] \\ &= \frac{q(n)}{2^n} + \frac{1}{2} \end{split}$$

World 1: D with a Pseudorandom Function

D^{F_k} simulates $\mathsf{PrivK}_{A,\Pi}^{\mathsf{cpa}}(n)$ for $A(1^n)$ (pseudorandom F_k)

 \blacktriangleright A interacts with $\mathcal O$ for $i=1,2,\ldots,q(n)$: choose m_i

► Simulation:

- 1. D generates $r_i \leftarrow \{0, 1\}^n$
- 2. D queries F_k on r_i : gets $F_k(r_i)$
- 3. *D* computes $c_i = m_i \oplus F_k(r_i)$; sends (r_i, c_i) to *A*
- A outputs (m_0, m_1)
- ► Simulation:
 - 1. D generates $b \leftarrow \{0, 1\}$
 - 2. D generates $r_c \leftarrow \{0,1\}^n$; gets $F_k(r_c)$
 - 3. D computes $c = m_b \oplus F_k(r_c)$; sends (r_c, c) to A
- A continues to interact with \mathcal{O}
- $\blacktriangleright \ b' \leftarrow A(c)$
- If b = b' then D(y) = 1

World 1: D with a Pseudorandom Function

D simulates $\mathsf{PrivK}^{cpa}_{A,\Pi}$ for A

The \mathbf{Pr} with which \boldsymbol{A} succeeds in this case is

$\Pr[\mathsf{PrivK}^{\mathrm{cpa}}_{A,\Pi}(n)=1]$

Note

This is the \mathbf{Pr} that we want to bound!

Proof.

By the assumption that F is a PRF $\exists \epsilon(n) =$ negl:

$$\Pr_{k \leftarrow \{0,1\}^n}[D^{F_k(\cdot)} = 1] - \Pr_{f \leftarrow \mathcal{F}_n}[D^{f(\cdot)} = 1]| \le \epsilon(n)$$

By the simulation of $\mathsf{PrivK}^{\mathsf{cpa}}_{A,\widetilde{\Pi}}(n)$ by D^f :

$$\Pr_{f \leftarrow \mathcal{F}_n}[D^{f(\cdot)} = 1] = \Pr[\mathsf{PrivK}_{A,\widetilde{\Pi}}^{\mathrm{cpa}}(n) = 1] = \frac{q(n)}{2^n} + \frac{1}{2}$$

By the simulation of $\mathsf{Priv}\mathsf{K}^{\mathsf{cpa}}_{A,\Pi}(n)$ by D^{F_k} :

$$\Pr_{k \leftarrow \{0,1\}^n}[D^{F_k(\cdot)} = 1] = \Pr[\mathsf{PrivK}^{cpa}_{A,\Pi}(n) = 1]$$

Real-world Security?

- What happens if a nonce r is ever reused?
- ► What happens to the bound if the nonce is chosen non-uniformly?

Attacks?

Nonce \boldsymbol{r} not used correctly

• If r repeats, security fails

- Exactly analogous to multiple encryptions using the (pseudo)one-time pad scheme
- \blacktriangleright When r is a uniform, n-bit string, the probability of a repeat is **negligible**
- ▶ If r is too short, or is chosen from another distribution, repeats may happen
 - ▶ May make scheme insecure

Attacks?

\boldsymbol{F} not used correctly

- (Function of) plaintext directly leaked in ciphertext e.g. $\langle m, F_k(m) \rangle$
- F not used with a random, unknown key e.g. $Enc_k(m) = \langle r, F_r(m) \rangle$

CPA-secure Encryption Summary

Practical CPA-secure Scheme

We have shown a CPA-secure encryption scheme based on any PRF:

$$\mathsf{Enc}_k(m) = \langle r, F_k(r) \oplus m
angle$$

Drawbacks?

- ► A 1-block plaintext results in a 2-block ciphertext
- \blacktriangleright Only defined for encryption of n-bit messages
- (Both key and message of length n i.e. OTP limitation 1)
- ► Solution: Modes of Operation (next lecture!)

End

Reference: Section 3.5.2