Introduction to Modern Cryptography

Michele Ciampi
(Slides courtesy of Prof. Jonathan Katz)

Lecture 11, Part 1

Hash Functions

Hash Functions and Message Authentication

Recall

- We showed how to construct a secure MAC for short, fixed-length messages based on any PRF/block cipher
- We extended this to a secure MAC for arbitrary-length messages using CBC-MAC

Question

Can we use hash functions to construct a secure MAC for arbitrary-length messages?

Hash Functions

(Cryptographic) hash function

Deterministic function mapping arbitrary length inputs to a short, fixed-length output (a digest)

Keyed or unkeyed

- In practice, hash functions are unkeyed
- Theoretically, need to be keyed: key is public
- Assume unkeyed hash functions for simplicity

Collision-resistance

Collision

Let $\boldsymbol{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{l}$ be a hash function. A collision is a pair of distinct inputs $\boldsymbol{x}, \boldsymbol{x}^{\prime}$ such that $\boldsymbol{H}(\boldsymbol{x})=\boldsymbol{H}\left(\boldsymbol{x}^{\prime}\right)$

Collision-resistance
\boldsymbol{H} is collision-resistant if it is infeasible to find collision in \boldsymbol{H}

Generic Hash Function Attacks

Observation

Collisions are guaranteed to exist

Generic Attack Complexity

- What is the best generic collision attack on a hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{l}$?
- If we compute $\boldsymbol{H}\left(\boldsymbol{x}_{\mathbf{1}}\right) \ldots \boldsymbol{H}\left(\boldsymbol{x}_{\mathbf{2}^{l}+1}\right)$, we are guaranteed to find a collision (why?)
- Can we do better?

Birthday Paradox

- Compute $\boldsymbol{H}\left(\boldsymbol{x}_{\boldsymbol{1}}\right) \ldots \boldsymbol{H}\left(\boldsymbol{x}_{\boldsymbol{k}}\right)$
- What is the probability of a collision (as a function of \boldsymbol{k})?
- i.e. how many hashes do we need $(\boldsymbol{k}=$?) in order to find a colliding pair $\boldsymbol{H}\left(\boldsymbol{x}_{i}\right)=\boldsymbol{H}\left(\boldsymbol{x}_{j}\right)$?

The Birthday Paradox

How many people are needed to have a $\mathbf{5 0 \%}$ chance that some two people share a birthday?

Birthday Paradox: Balls and Bins Experiment

How many balls do we need to throw to have a $\mathbf{5 0 \%}$ chance that two balls fall in the same bin (a collision)?

- Bins = days of year $N=365$ (\#hashes $N=2^{l}$)
- Balls $=\boldsymbol{k}$ people (\boldsymbol{k} hash function inputs)

Birthday Attack

Theorem

The collision probability is $\mathcal{O}\left(\boldsymbol{k}^{\mathbf{2}} / \boldsymbol{N}\right)$

- When $\boldsymbol{k} \approx \sqrt{N}$, probability of a collision is $\approx 5 \mathbf{0 \%}$
- $k=23$ people suffice:
- $k \approx \sqrt{2^{l}}$ hash-function evaluations.

Note

In the analysis, \boldsymbol{H} is modelled as a random function \Longrightarrow worst case in terms of $\mathbf{P r}$

Security Implications of the Birthday Attack

Implication

To protect against attackers running in time $\mathbf{2}^{n}$ we need the output of our hash function to be $\boldsymbol{l}=\mathbf{2 n}$

- i.e. twice as long as symmetric keys for the same security

Comparison to Encryption Algorithms

To protect against attackers running in time 2^{n} (e.g. brute-force attack) we need the key to our symmetric-key algorithm (e.g. block-cipher keys, PRG seeds) to be \boldsymbol{n}

Example

To ensure 128 bit security we need a block cipher with 128 bit key and a hash function with 256 bit output

Birthday Bound

The birthday bound $\mathbf{2}^{\boldsymbol{n} / \mathbf{2}}$ comes up in many other cryptographic contexts

Example

IV reuse in CTR-mode encryption:

- If \boldsymbol{k} messages are encrypted, what are the chances that some IV is used twice?
- Note: this is much higher than the probability that a specific IV is used again

Building a Hash Function

Two-stage approach

1. Build a compression function \boldsymbol{h} i.e. hash function for fixed-length inputs
2. Build a hash function \boldsymbol{H} for arbitrary length inputs from a compression function \boldsymbol{h}

Building a Hash Function

- Assume we have a "good" compression function \boldsymbol{h}
- i.e. collision-resistant for fixed-length inputs
- (Will discuss how to construct such an \boldsymbol{h} later)
- Construct a hash function \boldsymbol{H} (for arbitrary length inputs) based on \boldsymbol{h}
- Prove that collision resistance of \boldsymbol{h} implies collision resistance of \boldsymbol{H}

Merkle-Damgård Transform

Claim
If \boldsymbol{h} is collision-resistant, then so is \boldsymbol{H}

Merkle-Damgård Transform

Proof.
Collision in $\boldsymbol{H} \Longrightarrow$ collision in \boldsymbol{h}

- Say $\boldsymbol{H}\left(m_{1} \ldots m_{B}\right)=\boldsymbol{H}\left(m_{1}^{\prime} \ldots m_{B^{\prime}}^{\prime}\right)$
- $|\boldsymbol{M}| \neq\left|\boldsymbol{M}^{\prime}\right|$, look at the last block
- $|\boldsymbol{M}|=\left|\boldsymbol{M}^{\prime}\right|$, look at largest \boldsymbol{i} with $\left(z_{i-1}, m_{i}\right) \neq\left(z_{i-1}^{\prime}, m_{i}^{\prime}\right)$

Compression Function from a PRF/Block Cipher

Davies-Meyer

The Davies-Meyer construction is a method to transform a block cipher into a compression function using a feedforward and the message block as the key

Example: SHA-256

SHA-256

Merkle-Damgård + Davis-Meyer + Block cipher (SHACAL-2)

Hash Functions in Practice

MD5 (broken!)

- Developed in 1991
- 128-bit output length
- Collisions found in 2004, should no longer be used

SHA-1 (broken!)

- Introduced in 1995
- 160-bit output length
- Collision found in 2017 (fixed prefix) and in 2020 (chosen prefix); should no longer be used

Hash Functions in Practice

SHA-2

- Introduced in 2001
- Versions with $\mathbf{2 2 4}, \mathbf{2 5 6}, \mathbf{3 8 4}$, and $\mathbf{5 1 2}$-bit outputs
- No significant known weaknesses

SHA-3/Keccak

- Result of a public competition from 2008-2012
- Very different design than SHA-1/SHA-2
- Does not use Merkle-Damgård transform
- Supports 224, 256, 384, and 512-bit outputs

Hash Functions History

Hash Functions and Message Authentication

Recall

We showed how to construct a secure MAC for short, fixed-length messages based on any PRF/block cipher

Question

Can we use hash functions to construct a secure MAC for arbitrary-length messages?

Main Idea

> M

- \boldsymbol{A} and \boldsymbol{B} share a reliable channel that can handle short messages
- \boldsymbol{A} wants to send reliably a long message \boldsymbol{M}

Main Idea

$$
h=H(M)
$$

- \boldsymbol{A} hashes the long message \boldsymbol{M} to a shorter fixed-length digest $\boldsymbol{h}=\boldsymbol{H}(\boldsymbol{M})$

Main Idea

- \boldsymbol{A} sends \boldsymbol{h} over the reliable channel

Main Idea

- \boldsymbol{A} sends \boldsymbol{M} over the general (unreliable) channel

Main Idea

- B receives \boldsymbol{M} and recomputes its hash $\boldsymbol{h}=\boldsymbol{H}(\boldsymbol{M})$
- \boldsymbol{B} checks whether \boldsymbol{h} matches the hash received by \boldsymbol{A}
- If no match \Longrightarrow the long message \boldsymbol{M} has been modified

Hash-and-MAC

- \boldsymbol{A} and \boldsymbol{B} share a key $\boldsymbol{k} ; \boldsymbol{A}$ transmits long message \boldsymbol{M}
- The reliable channel for short messages is replaced by a MAC for short messages

Hash-and-MAC

$$
\begin{gathered}
\mathrm{h}=\mathrm{H}(\mathrm{M}) \\
\mathrm{t}=\mathrm{Mac}_{\mathrm{k}}(\mathrm{~h})
\end{gathered}
$$

- \boldsymbol{A} computes the hash $\boldsymbol{h}=\boldsymbol{H}(\boldsymbol{M})$
- \boldsymbol{A} authenticates the hash with the tag $\boldsymbol{t}=\operatorname{Mac}_{\boldsymbol{k}}(\boldsymbol{h})$

Hash-and-MAC

- \boldsymbol{A} transmits the hash and the tag $\boldsymbol{h}, \boldsymbol{t}$

Hash-and-MAC

- \boldsymbol{A} transmits the long message \boldsymbol{M}

Hash-and-MAC

- \boldsymbol{B} receives \boldsymbol{M} and recomputes its hash $\boldsymbol{h}=\boldsymbol{H}(\boldsymbol{M})$
- \boldsymbol{B} verifies the received $\operatorname{tag} \boldsymbol{t}$ by $\mathrm{Vrfy}_{\boldsymbol{k}}(\boldsymbol{h}, \boldsymbol{t})$
- If $\operatorname{Vrfy}_{\boldsymbol{k}}(\boldsymbol{h}, \boldsymbol{t})=\mathbf{1} \Longrightarrow \boldsymbol{M}$ has not been modified

Hash-and-MAC

Not necessary to transmit \boldsymbol{h} as \boldsymbol{B} can recompute it from \boldsymbol{M}

Proof of Security

Claim

If the MAC is secure for fixed-length messages and \boldsymbol{H} is collision-resistant, then the [previous] construction is a secure MAC for arbitrary-length messages

Proof sketch

- The sender authenticates messages $\boldsymbol{M}_{1}, \boldsymbol{M}_{2}, \ldots$
- As usual the attacker can choose (adaptively) $\boldsymbol{M}_{\mathbf{1}}, \boldsymbol{M}_{2}, \ldots$
- Attacker outputs forgery $(M, t): M \neq M_{i}, \forall i$
- Two cases:

1. $\boldsymbol{H}(\boldsymbol{M})=\boldsymbol{H}\left(\boldsymbol{M}_{\boldsymbol{i}}\right)$ for some $\boldsymbol{i} \Longrightarrow$ collision in \boldsymbol{H}
2. $\boldsymbol{H}(\boldsymbol{M}) \neq \boldsymbol{H}\left(\boldsymbol{M}_{\boldsymbol{i}}\right): \forall \boldsymbol{} \Longrightarrow$ forgery in the underlying, fixed-length MAC

Instantiation

Question

Can we instantiate the described scheme using a hash function (e.g. SHA2) and a block cipher-based MAC (e.g. AES as a PRF)?

Problems

- Block-length mismatch (e.g. 128 bits for AES vs. 256 bits for SHA256)
- Need to implement two crypto primitives (block cipher and hash function)

Solution: HMAC

HMAC

HMAC is a practical instantiation of the hash-and-MAC paradigm

- Constructed entirely from Merkle-Damgård hash functions
- MD5, SHA-1, SHA-2
- Not SHA-3
- Follows the hash-and-MAC approach with (part of) the hash function being used as a PRF

HMAC [Bellare,Canetti,Krawczyk,1996]

- ipad: inner padding (the byte 0×36 repeated $|\boldsymbol{K}|$ times).
- opad: outer padding (the byte 0 x 5 C repeated $|\boldsymbol{K}|$ times).

End

References: Sec 5.1, 5.2, 5.3.1, 5.4.1. Sec. 6.3 (no proofs).

