
Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 11, Part 1

1 / 28

Hash Functions

2 / 28

Hash Functions and Message Authentication

Recall

◮ We showed how to construct a secure MAC for short,
fixed-length messages based on any PRF/block cipher

◮ We extended this to a secure MAC for arbitrary-length
messages using CBC-MAC

Question

Can we use hash functions to construct a secure MAC for
arbitrary-length messages?

3 / 28

Hash Functions

(Cryptographic) hash function

Deterministic function mapping arbitrary length inputs to a
short, fixed-length output (a digest)

Keyed or unkeyed

◮ In practice, hash functions are unkeyed

◮ Theoretically, need to be keyed: key is public

◮ Assume unkeyed hash functions for simplicity

4 / 28

Collision-resistance

Collision

Let H : {0, 1}∗ → {0, 1}l be a hash function. A collision is a
pair of distinct inputs x, x′ such that H(x) = H(x′)

Collision-resistance

H is collision-resistant if it is infeasible to find collision in H

5 / 28

Generic Hash Function Attacks

Observation

Collisions are guaranteed to exist

Generic Attack Complexity

◮ What is the best generic collision attack on a hash
function H : {0, 1}∗ → {0, 1}l ?

◮ If we compute H(x1) . . .H(x2l+1), we are guaranteed to
find a collision (why?)

◮ Can we do better?

6 / 28

Birthday Paradox

◮ Compute H(x1) . . .H(xk)

◮ What is the probability of a collision (as a function of k)?

◮ i.e. how many hashes do we need (k =?) in order to find a
colliding pair H(xi) = H(xj)?

The Birthday Paradox

How many people are needed to have a 50% chance that some
two people share a birthday?

7 / 28

Birthday Paradox: Balls and Bins Experiment

How many balls do we need to throw to have a 50% chance
that two balls fall in the same bin (a collision)?

◮ Bins = days of year N = 365 (#hashes N = 2l)

◮ Balls = k people (k hash function inputs)

8 / 28

Birthday Attack

Theorem

The collision probability is O(k2/N)

◮ When k ≈
√
N , probability of a collision is ≈ 50%

◮ k = 23 people suffice:

◮ k ≈
√
2l hash-function evaluations.

Note

In the analysis, H is modelled as a random function =⇒
worst case in terms of Pr

9 / 28

Security Implications of the Birthday Attack

Implication

To protect against attackers running in time 2n we need the
output of our hash function to be l = 2n

◮ i.e. twice as long as symmetric keys for the same security

Comparison to Encryption Algorithms

To protect against attackers running in time 2n

(e.g. brute-force attack) we need the key to our symmetric-key
algorithm (e.g. block-cipher keys, PRG seeds) to be n

Example

To ensure 128 bit security we need a block cipher with 128 bit
key and a hash function with 256 bit output

10 / 28

Birthday Bound

The birthday bound 2n/2 comes up in many other
cryptographic contexts

Example

IV reuse in CTR-mode encryption:

◮ If k messages are encrypted, what are the chances that
some IV is used twice?

◮ Note: this is much higher than the probability that a
specific IV is used again

11 / 28

Building a Hash Function

Two-stage approach

1. Build a compression function h i.e. hash function for
fixed-length inputs

2. Build a hash function H for arbitrary length inputs from
a compression function h

12 / 28

Building a Hash Function

◮ Assume we have a “good” compression function h
◮ i.e. collision-resistant for fixed-length inputs

◮ (Will discuss how to construct such an h later)

◮ Construct a hash function H (for arbitrary length inputs)
based on h

◮ Prove that collision resistance of h implies collision
resistance of H

13 / 28

Merkle-Damg̊ard Transform

Claim

If h is collision-resistant, then so is H

14 / 28

Merkle-Damg̊ard Transform

Proof.

Collision in H =⇒ collision in h

◮ Say H(m1 . . .mB) = H(m′

1
. . .m′

B′)

◮ |M | 6= |M ′|, look at the last block

◮ |M | = |M ′|, look at largest i with
(zi−1,mi) 6= (z′

i−1
,m′

i)

15 / 28

Compression Function from a PRF/Block Cipher

Davies-Meyer

The Davies-Meyer construction is a method to transform a
block cipher into a compression function using a
feedforward and the message block as the key

Hi−1

Mi Fk

Hi

16 / 28

Example: SHA-256

SHA-256

Merkle-Damg̊ard + Davis-Meyer + Block cipher (SHACAL-2)

Hi−1

256 bits

Mi

512 bits
SHACAL-2

Hi

256 bits

17 / 28

Hash Functions in Practice

MD5 (broken!)

◮ Developed in 1991

◮ 128-bit output length

◮ Collisions found in 2004, should no longer be used

SHA-1 (broken!)

◮ Introduced in 1995

◮ 160-bit output length

◮ Collision found in 2017 (fixed prefix) and in 2020 (chosen
prefix); should no longer be used

18 / 28

Hash Functions in Practice

SHA-2

◮ Introduced in 2001

◮ Versions with 224, 256, 384, and 512-bit outputs

◮ No significant known weaknesses

SHA-3/Keccak

◮ Result of a public competition from 2008-2012

◮ Very different design than SHA-1/SHA-2
◮ Does not use Merkle-Damg̊ard transform

◮ Supports 224, 256, 384, and 512-bit outputs

19 / 28

Hash Functions History

1990MD4

1991MD5

1992HAVAL RIPEMD

1993SHA-0

SHA-1 1995RIPEMD-160

2002SHA-2

2012SHA-3

Credit: Prof. Bart Preneel

20 / 28

Hash Functions and Message Authentication

Recall

We showed how to construct a secure MAC for short,
fixed-length messages based on any PRF/block cipher

Question

Can we use hash functions to construct a secure MAC for
arbitrary-length messages?

21 / 28

Main Idea

◮ A and B share a reliable channel that can handle short
messages

◮ A wants to send reliably a long message M

22 / 28

Main Idea

◮ A hashes the long message M to a shorter fixed-length
digest h = H(M)

22 / 28

Main Idea

◮ A sends h over the reliable channel

22 / 28

Main Idea

◮ A sends M over the general (unreliable) channel

22 / 28

Main Idea

◮ B receives M and recomputes its hash h = H(M)

◮ B checks whether h matches the hash received by A

◮ If no match =⇒ the long message M has been modified

22 / 28

Hash-and-MAC

◮ A and B share a key k; A transmits long message M

◮ The reliable channel for short messages is replaced by a
MAC for short messages

23 / 28

Hash-and-MAC

◮ A computes the hash h = H(M)

◮ A authenticates the hash with the tag t = Mack(h)

23 / 28

Hash-and-MAC

◮ A transmits the hash and the tag h, t

23 / 28

Hash-and-MAC

◮ A transmits the long message M

23 / 28

Hash-and-MAC

◮ B receives M and recomputes its hash h = H(M)

◮ B verifies the received tag t by Vrfyk(h, t)

◮ If Vrfyk(h, t) = 1 =⇒ M has not been modified

23 / 28

Hash-and-MAC

Not necessary to transmit h as B can recompute it from M

23 / 28

Proof of Security

Claim

If the MAC is secure for fixed-length messages and H is
collision-resistant, then the [previous] construction is a secure
MAC for arbitrary-length messages

Proof sketch

◮ The sender authenticates messages M1,M2, . . .

◮ As usual the attacker can choose (adaptively) M1,M2, . . .

◮ Attacker outputs forgery (M, t) : M 6= Mi, ∀i
◮ Two cases:

1. H(M) = H(Mi) for some i =⇒ collision in H
2. H(M) 6= H(Mi) : ∀i =⇒ forgery in the underlying,

fixed-length MAC

24 / 28

Instantiation

Question

Can we instantiate the described scheme using a hash function
(e.g. SHA2) and a block cipher-based MAC (e.g. AES as a
PRF)?

Problems

◮ Block-length mismatch (e.g. 128 bits for AES vs. 256 bits
for SHA256)

◮ Need to implement two crypto primitives (block cipher and
hash function)

Solution: HMAC

25 / 28

HMAC

HMAC is a practical instantiation of the hash-and-MAC
paradigm

◮ Constructed entirely from Merkle-Damg̊ard hash functions
◮ MD5, SHA-1, SHA-2
◮ Not SHA-3

◮ Follows the hash-and-MAC approach with (part of) the
hash function being used as a PRF

26 / 28

HMAC [Bellare,Canetti,Krawczyk,1996]

IV

K ⊕ ipad

f

M1

f . . .

ML

f

IV

K ⊕ opad

f f tag

◮ ipad: inner padding (the byte 0x36 repeated |K| times).

◮ opad: outer padding (the byte 0x5C repeated |K| times).

27 / 28

End

References: Sec 5.1, 5.2, 5.3.1, 5.4.1. Sec. 6.3 (no proofs).

28 / 28

