Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 11, Part 1

Hash Functions

Hash Functions and Message Authentication

Recall

- We showed how to construct a secure MAC for short,
 fixed-length messages based on any PRF/block cipher
- ► We extended this to a secure MAC for **arbitrary-length messages** using CBC-MAC

Question

Can we use **hash functions** to construct a secure MAC for **arbitrary-length messages**?

Hash Functions

(Cryptographic) hash function

Deterministic function mapping arbitrary length inputs to a short, fixed-length output (a digest)

Keyed or unkeyed

- ▶ In practice, hash functions are unkeyed
- ► Theoretically, need to be keyed: key is public
- ► Assume unkeyed hash functions for simplicity

Collision-resistance

Collision

Let $H : \{0,1\}^* \to \{0,1\}^l$ be a hash function. A collision is a pair of distinct inputs x, x' such that H(x) = H(x')

Collision-resistance

 ${\boldsymbol{H}}$ is collision-resistant if it is infeasible to find collision in ${\boldsymbol{H}}$

Generic Hash Function Attacks

Observation

Collisions are guaranteed to exist

Generic Attack Complexity

- ▶ What is the best **generic** collision attack on a hash function $H : \{0, 1\}^* \to \{0, 1\}^l$?
- If we compute $H(x_1) \dots H(x_{2^l+1})$, we are guaranteed to find a collision (why?)
- ► Can we do better?

Birthday Paradox

• Compute $H(x_1) \dots H(x_k)$

- What is the probability of a collision (as a function of k)?
- ▶ i.e. how many hashes do we need (k = ?) in order to find a colliding pair $H(x_i) = H(x_j)$?

The Birthday Paradox

How many people are needed to have a 50% chance that some two people share a birthday?

Birthday Paradox: Balls and Bins Experiment

How many balls do we need to throw to have a **50%** chance that two balls fall in the same bin (a collision)?

- ▶ Bins = days of year N = 365 (#hashes $N = 2^l$)
- **Balls** = k people (k hash function inputs)

Birthday Attack

Theorem

The collision probability is $\mathcal{O}(k^2/N)$

- When $k \approx \sqrt{N}$, probability of a collision is $\approx 50\%$
- k = 23 people suffice:
- $k \approx \sqrt{2^l}$ hash-function evaluations.

Note

In the analysis, H is modelled as a random function \implies worst case in terms of \mathbf{Pr}

Security Implications of the Birthday Attack

Implication

To protect against attackers running in time 2^n we need the output of our hash function to be l = 2n

▶ i.e. twice as long as symmetric keys for the same security

Comparison to Encryption Algorithms

To protect against attackers running in time 2^n (e.g. brute-force attack) we need the key to our symmetric-key algorithm (e.g. block-cipher keys, PRG seeds) to be n

Example

To ensure **128** bit security we need a block cipher with **128** bit key and a hash function with **256** bit output

Birthday Bound

The birthday bound $2^{n/2}$ comes up in many other cryptographic contexts

Example

IV reuse in CTR-mode encryption:

- ► If k messages are encrypted, what are the chances that some IV is used twice?
- ► Note: this is much higher than the probability that a specific IV is used again

Building a Hash Function

Two-stage approach

- 1. Build a compression function h i.e. hash function for fixed-length inputs
- 2. Build a **hash function** H for arbitrary length inputs from a compression function h

Building a Hash Function

- \blacktriangleright Assume we have a "good" compression function h
 - ▶ i.e. collision-resistant for fixed-length inputs
- (Will discuss how to construct such an h later)
- \blacktriangleright Construct a hash function H (for arbitrary length inputs) based on h
- \blacktriangleright Prove that collision resistance of h implies collision resistance of H

Merkle-Damgård Transform

Merkle-Damgård Transform

Proof.

Collision in $H \implies$ collision in h

- Say $H(m_1 \dots m_B) = H(m'_1 \dots m'_{B'})$
- ▶ $|M| \neq |M'|$, look at the last block

$$|M| = |M'|, \text{ look at largest } i \text{ with } (z_{i-1}, m_i) \neq (z'_{i-1}, m'_i)$$

Compression Function from a PRF/Block Cipher

Davies-Meyer

The Davies-Meyer construction is a method to transform a **block cipher** into a **compression function** using a feedforward and the message block as the key

Example: SHA-256

SHA-256

Merkle-Damgård + Davis-Meyer + Block cipher (SHACAL-2)

Hash Functions in Practice

MD5 (broken!)

- ▶ Developed in 1991
- ▶ 128-bit output length
- ► Collisions found in 2004, should no longer be used

SHA-1 (broken!)

- ▶ Introduced in 1995
- ▶ 160-bit output length
- Collision found in 2017 (fixed prefix) and in 2020 (chosen prefix); should no longer be used

Hash Functions in Practice

SHA-2

- ▶ Introduced in 2001
- ▶ Versions with **224**, **256**, **384**, and **512**-bit outputs
- ▶ No significant known weaknesses

SHA-3/Keccak

- $\blacktriangleright\,$ Result of a public competition from 2008-2012
- \blacktriangleright Very different design than SHA-1/SHA-2
 - Does not use Merkle-Damgård transform
- ▶ Supports **224**, **256**, **384**, and **512**-bit outputs

Hash Functions History

Credit: Prof. Bart Preneel

Hash Functions and Message Authentication

Recall

We showed how to construct a secure MAC for short, **fixed-length messages** based on any PRF/block cipher

Question

Can we use **hash functions** to construct a secure MAC for **arbitrary-length messages**?

• A wants to send reliably a long message M

• A hashes the long message M to a shorter fixed-length digest h = H(M)

\blacktriangleright **A** sends **h** over the reliable channel

\blacktriangleright **A** sends **M** over the general (unreliable) channel

- B receives M and recomputes its hash h = H(M)
- $\blacktriangleright~B$ checks whether h matches the hash received by A
- If no match \implies the long message M has been modified

\blacktriangleright **A** and **B** share a key **k**; **A** transmits long message **M**

 The reliable channel for short messages is replaced by a MAC for short messages

- A computes the hash h = H(M)
- A authenticates the hash with the tag $t = Mac_k(h)$

• A transmits the hash and the tag h, t

\blacktriangleright *A* transmits the long message *M*

- B receives M and recomputes its hash h = H(M)
- ▶ B verifies the received tag t by $Vrfy_k(h, t)$
- If $Vrfy_k(h,t) = 1 \implies M$ has not been modified

Not necessary to transmit h as B can recompute it from M

Proof of Security

Claim

If the MAC is secure for fixed-length messages and H is collision-resistant, then the [previous] construction is a secure MAC for arbitrary-length messages

Proof sketch

- The sender authenticates messages M_1, M_2, \ldots
- \blacktriangleright As usual the attacker can choose (adaptively) M_1, M_2, \ldots
- Attacker outputs forgery $(M, t) : M \neq M_i, \forall i$

► Two cases:

- 1. $H(M) = H(M_i)$ for some $i \implies$ collision in H
- 2. $H(M) \neq H(M_i): \forall i \implies$ forgery in the underlying, fixed-length MAC

Instantiation

Question

Can we instantiate the described scheme using a hash function (e.g. SHA2) and a block cipher-based MAC (e.g. AES as a PRF)?

Problems

- Block-length mismatch (e.g. 128 bits for AES vs. 256 bits for SHA256)
- Need to implement two crypto primitives (block cipher and hash function)

Solution: HMAC

HMAC

HMAC is a practical instantiation of the hash-and-MAC paradigm

- Constructed entirely from Merkle-Damgård hash functions
 MD5, SHA-1, SHA-2
 - ▶ Not SHA-3
- ► Follows the hash-and-MAC approach with (part of) the hash function being used as a PRF

HMAC [Bellare,Canetti,Krawczyk,1996]

ipad: inner padding (the byte 0x36 repeated |K| times).
opad: outer padding (the byte 0x5C repeated |K| times).

End

References: Sec 5.1, 5.2, 5.3.1, 5.4.1. Sec. 6.3 (no proofs).