Zero-Knowledge Interactive Proofs

Michele Ciampi

THE UNIVERSITY

Two parties for a proof

- Merlin (prover) has unbounded resources
- Arthur (verifier) has limited resources

Theorem/statement **x** π

The proof is efficient: **x** is an NP statement and π is its certificate/witness/proof

Graph Isomorphism

such that any two vertices u and v of **G** are adjacent in **G** if and only if $\pi(u)$ and $\pi(v)$ are adjacent in **H**.

З

4

An isomorphism of graphs G and H is a bijection (permutation) π between the vertex sets of G and H π : V(**G**) —> V(**H**)

Graph Isomorphism

The problem belongs to NP

We do not know if it is in P: best known algorithm is quasi-polynomial time

Graph Isomorphism

2

5

Thm

Interactive Proofs

- Suppose now that I want to prove that two graphs are **not isomorphic** or that an equation has no solutions.
- Introduced by Goldwasser, Micali and Rackoff
 - A proof is described as a game between a prover and a verifier
 - The theorem is true if and only if the prover wins the game always.
 - If the theorem is false then the prover loses the game with 50% probability

Prover (Merlin)

Verifier (Arthur)

Interactive Proofs

A simple example first

Verifier

Interactive Proofs

If the pencils are both red, then the prover convinces the verifier with a 50% probability

A simple example first

Verifier

We can repeat the proof many times to make this probability small

Graph Non-Isomorphism

Unbounded

π '	
G	С
	5
2	2
3	4
4	1
5	3

Poly

.

Interactive Proofs (formal definition)

completeness bound $c(\cdot)$ and soundness bound $s(\cdot)$, if

- (modified) completeness: for every $x \in L$,
- \bullet

Definition 4.2.6 (Generalized Interactive Proof): Let $c, s : \mathbb{N} \to \mathbb{R}$ be functions satisfying $c(n) > s(n) + \frac{1}{p(n)}$ for some polynomial $p(\cdot)$. An interactive pair (P, V) is called a (generalized) interactive proof system for the language L, with

 $\Pr[\langle P, V \rangle(x) = 1] \ge c(|x|)$

(modified) soundness: for every $x \notin L$ and every interactive machine B,

 $\Pr[\langle B, V \rangle(x) = 1] \leq s(|x|)$

In the previous example c(|x|)=1 and s(|x|)=1/2

- How much knowledge is transmitted to the verifier? •
- We would like to transmit only one bit: 1 if the theorem is true and 0 otherwise.
- E.g. For the case of graph isomorphism, the prover does not want to disclose the witness

Zero-Knowledge (ZK)

ZK for Graph Isomorphism

Witness

π		7	τ'	
G	Η	G	С	
1	2	1	5	
2	4	2	2	
3	3	3	4	
4	5	4	1	
5	1	5	3	
$C \subset \pi'(G)$				

ZK for Graph Isomorphism

If the graphs are non-isomorphic then the prover convinces the verifier with a 50% probability

We can repeat the proof many times to make this probability small

Zero Knowledge

- - knows only that the theorem is true
 - is efficient
 - the verifier is honest)
 - has black-box access to the adversary

• The notion of zero knowledge requires the existence of a simulator **S** that:

generates a transcript that is distributed similarly* to the real one (when

Honest-Verifier ZK for Graph Isomorphism

Why do we care?

- prover and verifier)
- CCA-encryption scheme
- Multi-party computation
- Identification schemes
- Privacy-preserving blockchains

• We know how to construct ZK proofs for any NP-language (with both efficient

Identification scheme

Password_{Alice}

Password₁ Password₂

. . . .

Identification scheme

Identification scheme

Х

Х

Identification scheme **y**, X₁=**g**^y I know y s.t. either X2 $x_1 = g^y$ or x₂=g^y or x₃=g^y or X4=**G** X3 **X**4

The references are for the book of Goldreich Oded: Foundations of Cryptography: Volume 1, Basic Tools (see the link on learn)

- Sec. 4.2 until (included) Sec. 4.2.2 with no proofs
- Sec. 4.3 until (included) Sec. 4.3.2 with no proofs
- Sec. 4.7 until (included) Definition 4.7.2 with no proofs

End

o proofs o proofs vith no proofs