Zero-Knowledge Interactive Proofs

Michele Ciampi

THE UNIVERSITY of EDINBURGH

Two parties for a proof

- Merlin (prover) has unbounded resources
- Arthur (verifier) has limited resources

Theorem/statement \mathbf{x}

The proof is efficient: \mathbf{x} is an NP statement and π is its certificate/witness/proof

Graph Isomorphism

An isomorphism of graphs \mathbf{G} and \mathbf{H} is a bijection (permutation) π between the vertex sets of \mathbf{G} and \mathbf{H} $\pi: V(\mathbf{G}) \longrightarrow \mathrm{V}(\mathbf{H})$
such that any two vertices u and v of \mathbf{G} are adjacent in \mathbf{G} if and only if $\pi(u)$ and $\pi(v)$ are adjacent in \mathbf{H}.

Graph Isomorphism

The problem belongs to NP
We do not know if it is in P : best known algorithm is quasi-polynomial time

Graph Isomorphism

Interactive Proofs

- Suppose now that I want to prove that two graphs are not isomorphic or that an equation has no solutions.
- Introduced by Goldwasser, Micali and Rackoff
- A proof is described as a game between a prover and a verifier
- The theorem is true if and only if the prover wins the game always.
- If the theorem is false then the prover loses the game with 50% probability

Prover (Merlin)

Verifier (Arthur)

Interactive Proofs

A simple example first

Interactive Proofs

A simple example first

Prover

Verifier

Graph Non-Isomorphism

Interactive Proofs (formal definition)

Definition 4.2.6 (Generalized Interactive Proof): Let $\mathrm{c}, \mathrm{s}: \mathbb{N} \rightarrow \mathbb{R}$ be functions satisfying $\mathrm{c}(n)>\mathrm{s}(n)+\frac{1}{p(n)}$ for some polynomial $p(\cdot)$. An interactive pair (P, V) is called a (generalized) interactive proof system for the language L, with completeness bound $\mathrm{c}(\cdot)$ and soundness bound $\mathrm{s}(\cdot)$, if

- (modified) completeness: for every $x \in L$,

$$
\operatorname{Pr}[\langle P, V\rangle(x)=1] \geq \mathrm{c}(|x|)
$$

- (modified) soundness: for every $x \notin L$ and every interactive machine B,

$$
\operatorname{Pr}[\langle B, V\rangle(x)=1] \leq \mathrm{s}(|x|)
$$

In the previous example $c(|x|)=1$ and $s(|x|)=1 / 2$

Zero-Knowledge (ZK)

Witness

$\boldsymbol{\pi}$	
\mathbf{G}	\mathbf{H}
1	2
2	4
3	3
4	5
5	1

G

Thm

H

- How much knowledge is transmitted to the verifier?
- We would like to transmit only one bit: 1 if the theorem is true and 0 otherwise.
- E.g. For the case of graph isomorphism, the prover does not want to disclose the witness

ZK for Graph Isomorphism

Witness

Thm

ZK for Graph Isomorphism

Witness

Thm

If the graphs are non-isomorphic then the prover convinces the verifier with a 50% probability

We can repeat the proof many times to make this probability small

Zero Knowledge

- The notion of zero knowledge requires the existence of a simulator \mathbf{S} that:
- knows only that the theorem is true
- is efficient
- generates a transcript that is distributed similarly* to the real one (when the verifier is honest)
- has black-box access to the adversary

Honest-Verifier ZK for Graph Isomorphism

$\operatorname{Sim} \quad$ Thm G $\approx H$

C $\Leftarrow \pi(G)$

Why do we care?

- We know how to construct ZK proofs for any NP-language (with both efficient prover and verifier)
- CCA-encryption scheme
- Multi-party computation
- Identification schemes
- Privacy-preserving blockchains

Identification scheme

Identification scheme

Identification scheme

$$
x=g^{y} \quad x
$$

Identification scheme

End

The references are for the book of Goldreich Oded: Foundations of Cryptography: Volume 1, Basic Tools (see the link on learn)

- Sec. 4.2 until (included) Sec. 4.2.2 with no proofs
- Sec. 4.3 until (included) Sec. 4.3.2 with no proofs
- Sec. 4.7 until (included) Definition 4.7.2 with no proofs

