Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 5, part 1

So far

- ► Introduced **perfect secrecy** (PS)
- ▶ Introduced **OTP** and proved that it satisfies PS
- Described the two **limitations of the OTP**
 - 1. Key as long as the message
 - 2. Key used only once
- ► Introduced **perfect indistinguishability** (PI)
- ► Proved that **PI is equivalent to PS**

This lecture

- ► Relax PI to **computational secrecy** (CS): a weaker, yet practical notion of security
- ► Introduce **pseudorandom generators** (PRG)

Computational Secrecy

Computational Secrecy?

Idea

Relax perfect indistinguishability

Two approaches

- ► Concrete security
- ► Asymptotic security

Computational Indistinguishability (Concrete)

Concrete Approach

- (t, ϵ) -indistinguishability:
- Security may fail with probability $\leq \epsilon$
- \blacktriangleright Restrict attention to attackers running in time $\leq t$
 - ▶ Or in t CPU cycles

Computational Indistinguishability (Concrete)

Concrete Approach

 Π is (t, ϵ) -indistinguishable if for all attackers A running in time at most t, it holds that

$$\Pr[\mathsf{PrivK}_{A,\Pi}=1] \leq rac{1}{2} + \epsilon$$

Note

- $(\infty, 0)$ -indistinguishable = perfect indistinguishability
- Relax definition by taking $t < \infty$ and $\epsilon > 0$

Concrete Security

Drawbacks

- \blacktriangleright Parameters t,ϵ are what we ultimately care about in the real world
- ▶ Does not lead to a clean theory:
 - Sensitive to exact computational model
 - Π can be (t, ϵ) -secure for many choices of t, ϵ
- ▶ Would like to have schemes where users can adjust the achieved security as desired

Asymptotic Security

• Introduce security parameter n

- $\blacktriangleright\,$ e.g. think of n as the key length
- ▶ Chosen by honest parties when they generate/share key
- ► Allows users to tailor the security level
- ▶ Known by adversary
- Measure running times of all parties, and the success probability of the adversary, as functions of n

Computational Indistinguishability (Asymptotic)

Asymptotic Approach

- \blacktriangleright Security may fail with probability **negligible** in n
- Restrict attention to attackers running in time (at most)
 polynomial in n

Polynomial Function

 $Z^+ = \{1, 2, 3, \ldots\}$ – set of positive integers

Definition

A function $f: Z^+ \to Z^+$ is polynomial if there exists c such that $f(n) < n^c$.

i.e. f is **asymptotically bounded** by a polynomial

Notation

 $\mathbf{poly}(n)$ or just \mathbf{poly} – any polynomial function in n

Negligible Function

Definition

A function $f: \mathbb{Z}^+ \to [0, 1]$ is **negligible** if for every polynomial $p, \exists N$ s.t. $\forall n > N : f(n) < \frac{1}{p(n)}$.

i.e. f decays faster than any inverse poly. for large enough n

Definition (equivalent)

A function $f: Z^+ \to [0, 1]$ is negligible if $\forall c = \text{const}: \exists N$ s.t. $\forall n > N: f(n) < n^{-c}$.

Notation negl(n) or just negl – any negligible function in n

Let
$$p(n) = n^{-5}$$
 i.e. $c = 5$.

$$f(n) = 2^{-n}$$

Solve $2^{-n} < n^{-5} \implies n > 5 \log n$ for $n \ge 23$ i.e. $N = 22$

 n^{-5} vs 2^{-n}

Let
$$p(n) = n^{-5}$$
 i.e. $c = 5$.

$$f(n) = 2^{-n}$$

Solve $2^{-n} < n^{-5} \implies n > 5 \log n$ for $n \ge 23$ i.e. $N = 22$

Solve
$$2^{-\sqrt{n}} < n^{-5} \implies n > 25 \log^2 n$$
 for $n \ge 3500$

$$f(n) = n^{-\log n}$$

Solve $n^{-\log n} < n^{-5} \implies \log n > 5$ for $n \ge 33$

i.e. $\forall c, f(n)$ decays faster than n^{-c} for large enough n.

Warning!

- Wrong: $n^{-\log n}$ decays faster than $2^{-\sqrt{n}}$
- Note: $2^{-\sqrt{n}} < n^{-\log n}$: $\forall n > 65536$.
- Correct: $n^{-\log n}$ decays faster than $2^{-\sqrt{n}}$ for $n \le 65536$

For values n < 65536 an adversarial success probability of $n^{-\log n}$ is still preferrable (for the algorithm designer) to $2^{-\sqrt{n}}$

Why polynomial? Why negligible?

- ► Somewhat arbitrary choices
- ▶ Borrowed from complexity theory
- efficient = probabilistic polynomial-time (PPT)
- ► Convenient closure properties

Closure Properties

- $poly \cdot poly = poly$
 - ▶ A PPT algorithm making calls to PPT subroutines is PPT
- ▶ $poly \cdot negl = negl$
 - Poly-many calls to subroutines that fail with negligible probability fail with negligible probability overall

Redefining Encryption in the Computational Setting

A private-key encryption scheme is defined by three \mathbf{PPT} algorithms (Gen,Enc,Dec) :

- Gen: takes as input 1^n ; outputs k. (Assume $|k| \ge n$.)
- Enc: takes as input a key k and message $m \in \{0, 1\}^*$; outputs ciphertext $c \leftarrow \text{Enc}_k(m)$
- Dec: takes key k and ciphertext c as input; outputs a message m or error

The $\mathbf{1}^{n}$ notation

$$1^n = \underbrace{11\dots 1}_{n \text{ times}}$$

- Denotes the size of the input e.g. $Gen(1^n)$ or $A(1^n)$
- Stresses that a PPT algorithm (e.g. Gen, A) is polynomial in n

Computational Indistinguishability (Asymptotic)

$\mathsf{PrivK}_{A,\Pi}(n)$

Fix a scheme Π and some adversary A. Define a randomized experiment $\mathsf{PrivK}_{A,\Pi}(n)$:

- $A(1^n)$ outputs $m_0, m_1 \in \{0,1\}^*$ of equal length
- $\blacktriangleright \ k \leftarrow \mathsf{Gen}(1^n), \, b \leftarrow \{0,1\}, \, c \leftarrow \mathsf{Enc}_k(m_b)$
- $\blacktriangleright \ b' \leftarrow A(c)$
- ▶ Adversary A succeeds if b = b', and we say the experiment evaluates to 1 in this case

Computational Indistinguishability (Asymptotic)

II is computationally indistinguishable (EAV-secure) if for all PPT attackers A, there is a negligible function ϵ such that

$$\Pr[\mathsf{PrivK}_{A,\Pi}(n)=1] \leq rac{1}{2} + \epsilon(n)$$

EAV-secure = indistinguishable against EAVesdropping

- ▶ Note that $f(n) = \Pr[\mathsf{PrivK}_{A,\Pi}(n) = 1]$ is a function in n
- $\blacktriangleright f: Z^+ \rightarrow [0,1]$ maps each value of n to a probability
- Therefore we can talk about the **asymptotic behaviour** of f in the security parameter n

Consider a scheme Π where $\text{Gen}(1^n)$ generates a uniform *n*-bit key. Assume that we know that the best attack is brute-force search of the key space

 \boldsymbol{A} 's attack strategy

- 1. Input m_0, m_1, c ; find $b : \operatorname{Enc}_k(m_b) = c$.
- 2. A randomly selects $k \in \mathcal{K}$ and computes $\mathsf{Enc}_k(m_0)$ and $\mathsf{Enc}_k(m_1)$.
- 3. If \boldsymbol{k} is correct (\boldsymbol{c} matches $\mathsf{Enc}_{\boldsymbol{k}}$) output correct \boldsymbol{b}
- 4. Else output random guess \boldsymbol{b}
- 5. Pr of A to succeed i.e. $\Pr[\mathsf{PrivK}_{A,\Pi}(n) = 1]$ is:

 $\begin{aligned} &\Pr[\text{correct guess}|\text{correct key}]\Pr[\text{correct key}]+\\ &\Pr[\text{correct guess}|\text{incorrect key}]\Pr[\text{incorrect key}]\\ &=1\frac{1}{2^n}+\frac{1}{2}(1-\frac{1}{2^n})=\frac{1}{2}+\frac{1}{2^{n+1}}=\frac{1}{2}+\text{negl}\\ &\implies \Pi \text{ is EAV-secure} \end{aligned}$

Give more computational power to the attacker and assume A can make not 1 but t(n) key guess where t is polynomial in n

A's attack strategy (polynomial adversary)

- 1. Input m_0, m_1, c ; find $b : \operatorname{Enc}_k(m_b) = c$.
- 2. A randomly selects t(n) keys $k \in \mathcal{K}$ and for each key computes $\operatorname{Enc}_k(m_0)$ and $\operatorname{Enc}_k(m_1)$.
- 3. If one k is correct (c matches Enc_k) output correct b
- 4. Else output random guess \boldsymbol{b}
- 5. Pr of A to succeed i.e. $\Pr[\mathsf{PrivK}_{A,\Pi}(n) = 1]$ is:

$$\frac{t(n)}{2^n}1 + (1 - \frac{t(n)}{2^n})\frac{1}{2} = \frac{1}{2} + \frac{t(n)}{2^{n+1}} = \frac{1}{2} + \text{negl}$$

 $\implies \Pi$ is EAV-secure

For polynomial t, the function $\frac{t(n)}{2^{n+1}}$ is negligible

 $\blacktriangleright \text{ Recall: } \mathbf{poly} \cdot \mathbf{negl} = \mathbf{negl}$

Example

- ▶ What happens when computers get faster?
- e.g. consider a scheme that takes time n² to run but time 2ⁿ to break with prob. 1
- ▶ What if computers get 4 times faster?
- ▶ Honest users double n and can thus maintain the same running time: $(2n)^2/4 = n^2$
- Time to break scheme is squared: 2^{2n}
 - ▶ Time required to break the scheme increases
- ► The security proofs still hold

Encryption and Plaintext Length

- ▶ In practice, we want encryption schemes that can encrypt arbitrary-length messages
- Encryption does not hide the plaintext length (in general)
- The definition takes this into account by requiring m_0, m_1 to have the same length
- Beware that leaking plaintext length can often lead to problems in the real world
 - e.g. plaintexts (yes, no) or numerical values
 - ▶ e.g. compression before encryption: small length ⇒ big plaintext redundancy (CRIME attack on TLS)

If leaking plaintext length is a concern, additional steps are necessary e.g. pad all messages to the same length.

Computational Secrecy

- ► From now on, we will assume the **computational setting** by default
- ► Usually, the **asymptotic setting**

End

References: Chapter 3, until Pag. 56.