
Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 5, part 1

1 / 29

So far

▶ Introduced perfect secrecy (PS)

▶ Introduced OTP and proved that it satisfies PS

▶ Described the two limitations of the OTP

1. Key as long as the message
2. Key used only once

▶ Introduced perfect indistinguishability (PI)

▶ Proved that PI is equivalent to PS

This lecture

▶ Relax PI to computational secrecy (CS): a weaker, yet
practical notion of security

▶ Introduce pseudorandom generators (PRG)

2 / 29

Computational Secrecy

3 / 29

Computational Secrecy?

Idea

Relax perfect indistinguishability

Two approaches

▶ Concrete security

▶ Asymptotic security

4 / 29

Computational Indistinguishability (Concrete)

Concrete Approach

▶ (t, ϵ)-indistinguishability:

▶ Security may fail with probability ≤ ϵ

▶ Restrict attention to attackers running in time ≤ t
▶ Or in t CPU cycles

5 / 29

Computational Indistinguishability (Concrete)

Concrete Approach

Π is (t, ϵ)-indistinguishable if for all attackers A running in
time at most t, it holds that

Pr[PrivKA,Π = 1] ≤
1

2
+ ϵ

Note

▶ (∞, 0)-indistinguishable = perfect indistinguishability

▶ Relax definition by taking t <∞ and ϵ > 0

6 / 29

Concrete Security

Drawbacks

▶ Parameters t, ϵ are what we ultimately care about in the
real world

▶ Does not lead to a clean theory:
▶ Sensitive to exact computational model
▶ Π can be (t, ϵ)-secure for many choices of t, ϵ

▶ Would like to have schemes where users can adjust the
achieved security as desired

7 / 29

Asymptotic Security

▶ Introduce security parameter n
▶ e.g. think of n as the key length
▶ Chosen by honest parties when they generate/share key
▶ Allows users to tailor the security level
▶ Known by adversary

▶ Measure running times of all parties, and the success
probability of the adversary, as functions of n

8 / 29

Computational Indistinguishability (Asymptotic)

Asymptotic Approach

▶ Security may fail with probability negligible in n

▶ Restrict attention to attackers running in time (at most)
polynomial in n

9 / 29

Polynomial Function

Z+ = {1, 2, 3, . . .} – set of positive integers

Definition

A function f : Z+ → Z+ is polynomial if there exists c such
that f(n) < nc.

i.e. f is asymptotically bounded by a polynomial

Notation

poly(n) or just poly – any polynomial function in n

10 / 29

Negligible Function

Definition

A function f : Z+ → [0, 1] is negligible if for every
polynomial p, ∃N s.t. ∀n > N : f(n) < 1

p(n)
.

i.e. f decays faster than any inverse poly. for large enough n

Definition (equivalent)

A function f : Z+ → [0, 1] is negligible if ∀c = const : ∃N
s.t. ∀n > N : f(n) < n−c.

Notation

negl(n) or just negl – any negligible function in n

11 / 29

Examples of Negligible Functions

Let p(n) = n−5 i.e. c = 5.

f(n) = 2−n

Solve 2−n < n−5 =⇒ n > 5 logn for n ≥ 23 i.e. N = 22

12 / 29

n−5 vs 2−n

13 / 29

Examples of Negligible Functions

Let p(n) = n−5 i.e. c = 5.

f(n) = 2−n

Solve 2−n < n−5 =⇒ n > 5 logn for n ≥ 23 i.e. N = 22

Solve 2−
√

n < n−5 =⇒ n > 25 log2 n for n ≥≈ 3500

f(n) = n− logn

Solve n− logn < n−5 =⇒ logn > 5 for n ≥ 33

i.e. ∀c, f(n) decays faster than n−c for large enough n.

14 / 29

Examples of Negligible Functions

Warning!

▶ Wrong: n− logn decays faster than 2−
√

n

▶ Note: 2−
√

n < n− logn : ∀n > 65536.

▶ Correct: n− logn decays faster than 2−
√

n for n ≤ 65536

For values n < 65536 an adversarial sucess probability of
n− logn is still preferrable (for the algorithm designer) to 2−

√
n

15 / 29

Examples of Negligible Functions

Warning!

For values n < 65536 an adversarial sucess probability of
n− logn is still preferrable (for the algorithm designer) to 2−

√
n

16 / 29

Why polynomial? Why negligible?

▶ Somewhat arbitrary choices

▶ Borrowed from complexity theory

▶ efficient = probabilistic polynomial-time (PPT)

▶ Convenient closure properties

Closure Properties

▶ poly · poly = poly
▶ A PPT algorithm making calls to PPT subroutines is PPT

▶ poly · negl = negl
▶ Poly-many calls to subroutines that fail with negligible

probability fail with negligible probability overall

17 / 29

Redefining Encryption in the Computational Setting

A private-key encryption scheme is defined by three PPT
algorithms (Gen,Enc,Dec) :

▶ Gen: takes as input 1n; outputs k. (Assume |k| ≥ n.)

▶ Enc: takes as input a key k and message m ∈ {0, 1}∗;
outputs ciphertext c← Enck(m)

▶ Dec: takes key k and ciphertext c as input; outputs a
message m or error

18 / 29

The 1n notation

1n = 11 . . . 1︸ ︷︷ ︸
n times

▶ Denotes the size of the input e.g. Gen(1n) or A(1n)

▶ Stresses that a PPT algorithm (e.g. Gen, A) is
polynomial in n

19 / 29

Computational Indistinguishability (Asymptotic)

PrivKA,Π(n)

Fix a scheme Π and some adversary A. Define a randomized
experiment PrivKA,Π(n):

▶ A(1n) outputs m0,m1 ∈ {0, 1}∗ of equal length

▶ k← Gen(1n), b← {0, 1}, c← Enck(mb)

▶ b′ ← A(c)

▶ Adversary A succeeds if b = b′, and we say the experiment
evaluates to 1 in this case

20 / 29

Computational Indistinguishability (Asymptotic)

Π is computationally indistinguishable (EAV-secure) if
for all PPT attackers A, there is a negligible function ϵ such
that

Pr[PrivKA,Π(n) = 1] ≤
1

2
+ ϵ(n)

EAV-secure = indistinguishable against EAVesdropping

▶ Note that f(n) = Pr[PrivKA,Π(n) = 1] is a function in n

▶ f : Z+ → [0, 1] maps each value of n to a probability

▶ Therefore we can talk about the asymptotic behaviour
of f in the security parameter n

21 / 29

Example (EAV-security)

Consider a scheme Π where Gen(1n) generates a uniform n-bit
key. Assume that we know that the best attack is brute-force
search of the key space

22 / 29

Example (EAV-security)

A’s attack strategy

1. Input m0,m1, c; find b : Enck(mb) = c.

2. A randomly selects k ∈ K and computes Enck(m0) and
Enck(m1).

3. If k is correct (c matches Enck) – output correct b

4. Else output random guess b

5. Pr of A to succeed i.e. Pr[PrivKA,Π(n) = 1] is:

Pr[correct guess|correct key]Pr[correct key]+

Pr[correct guess|incorrect key]Pr[incorrect key]

= 1
1

2n
+

1

2
(1−

1

2n
) =

1

2
+

1

2n+1
=

1

2
+ negl

=⇒ Π is EAV-secure

23 / 29

Example (EAV-security)

Give more computational power to the attacker and assume A
can make not 1 but t(n) key guess where t is polynomial in n

24 / 29

Example (EAV-security)

A’s attack strategy (polynomial adversary)

1. Input m0,m1, c; find b : Enck(mb) = c.

2. A randomly selects t(n) keys k ∈ K and for each key
computes Enck(m0) and Enck(m1).

3. If one k is correct (c matches Enck) – output correct b

4. Else output random guess b

5. Pr of A to succeed i.e. Pr[PrivKA,Π(n) = 1] is:

t(n)

2n
1 + (1−

t(n)

2n
)
1

2
=

1

2
+

t(n)

2n+1
=

1

2
+ negl

=⇒ Π is EAV-secure

For polynomial t, the function t(n)
2n+1 is negligible

▶ Recall: poly · negl = negl

25 / 29

Example

▶ What happens when computers get faster?

▶ e.g. consider a scheme that takes time n2 to run but time
2n to break with prob. 1

▶ What if computers get 4 times faster?

▶ Honest users double n and can thus maintain the same
running time: (2n)2/4 = n2

▶ Time to break scheme is squared: 22n

▶ Time required to break the scheme increases

▶ The security proofs still hold

26 / 29

Encryption and Plaintext Length

▶ In practice, we want encryption schemes that can encrypt
arbitrary-length messages

▶ Encryption does not hide the plaintext length (in general)

▶ The definition takes this into account by requiring m0,m1

to have the same length

▶ Beware that leaking plaintext length can often lead to
problems in the real world
▶ e.g. plaintexts (yes, no) or numerical values
▶ e.g. compression before encryption: small length =⇒ big

plaintext redundancy (CRIME attack on TLS)

If leaking plaintext length is a concern, additional steps are
necessary e.g. pad all messages to the same length.

27 / 29

Computational Secrecy

▶ From now on, we will assume the computational setting
by default

▶ Usually, the asymptotic setting

28 / 29

End

References: Chapter 3, until Pag. 56.

29 / 29

