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Pseudorandomness
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Terminology: random vs. uniform

Random

Sample a random element according to some distribution

Uniform

Sample an element uniformly at random means to sample
according to the uniform distribution

Informally

random ≈ uniform

Pseudorandom (informally)

pseudorandom ≈ ”looks like random”
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Pseudorandomness

▶ Important building block for computationally secure
encryption

▶ Important concept in cryptography
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What does random mean?

Uniform

▶ What does uniform mean?

▶ Which of the following is a uniform string?
▶ 0101010101010101
▶ 0010111011100110
▶ 0000000000000000

If we generate a uniform 16-bit string, each of the above occurs
with probability 2−16
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What does uniform mean?

Uniformity

▶ Uniformity is not a property of a string, but a property of
a distribution

▶ A distribution on n-bit strings is a function
D : {0, 1}n → [0, 1] such that

∑
x D(x) = 1

▶ The uniform distribution on n-bit strings, denoted Un,
assigns probability 2−n to every x ∈ {0, 1}n
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What does pseudorandom mean?

Pseudorandom

▶ Cannot be distinguished from uniform (i.e. random)

▶ Which of the following is pseudorandom?
▶ 0101010101010101
▶ 0010111011100110
▶ 0000000000000000

▶ Pseudorandomness is a property of a distribution, not a
string
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Pseudorandomness (heuristic)

▶ Fix some distribution D on n-bit strings
▶ x← D means sample x according to D

▶ Historically, D was considered pseudorandom if it passed a
bunch of statistical tests
▶ Prx←D[1st bit of x is 1] ≈ 1/2
▶ Prx←D[parity of of x is 1] ≈ 1/2
▶ Prx←D[Testi(x) = 1] ≈ Prx←Un [Testi(x) = 1] for all

i = 1, 2, . . .

▶ This is not sufficient in an adversarial setting!

▶ Who knows what statistical test an attacker will use?
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Pseudorandomness

Cryptographic definition

D is pseudorandom if it passes all efficient statistical tests
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Pseudorandomness (concrete)

Definition

Let D be a distribution on p-bit strings. D is
(t, ϵ)-pseudorandom if for all A running in time at most t it
holds that:

|Prx←D[A(x) = 1]− Prx←Up[A(x) = 1]| ≤ ϵ
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Pseudorandomness (asymptotic)

▶ Security parameter n, polynomial p

▶ Let Dn be a distribution over p(n)-bit strings

▶ Pseudorandomness is a property of a sequence of
distributions:

{Dn} = {D1, D2, . . .}
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Pseudorandomness (asymptotic)

Definition

{Dn} is pseudorandom if for all probabilistic,
polynomial-time distinguishers A, there is a negligible function
ϵ such that

|Prx←Dn[A(x) = 1]− Prx←Up(n)
[A(x) = 1]| ≤ ϵ(n)
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Pseudorandom Generators (PRG)

▶ A PRG is an efficient, deterministic algorithm that
expands a short, uniform seed into a longer,
pseudorandom output

▶ Useful whenever you have a small number of true random
bits, and want lots of random-looking bits
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PRGs

G is a deterministic, poly-time algorithm that is expanding
i.e. |G(x)| = p(|x|) > |x|
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PRGs

▶ G defines a sequence of distributions {Dn}
▶ Dn: the distribution on p(n)-bit strings defined by

choosing x← Un and outputting G(x).

▶ The distribution on the output of G is far from uniform.

▶ Assume Un = {0, 1}2n and consider G that takes inputs
from {0, 1}n.

▶ What is, at most, the size of the range of G?

▶ In the range of G there is only a small fraction of the
strings samplable from Un: 2

n/22n = 2−n

▶ Hence, most elements of Un occur with probability 0 in the
output fo G.
▶ i.e. Far from uniform
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PRGs

▶ G is a PRG ⇐⇒ {Dn} is pseudorandom
▶ i.e. for all efficient distinguishers A, there is a negligible

function ϵ such that

|Prx←Un[A(G(x)) = 1]−Pry←Up(n)
[A(y) = 1]| ≤ ϵ(n)

▶ i.e. no efficient A can distinguish whether it is given G(x)
(for uniform x) or a uniform string y
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Is the Following PRG Secure?

PRG

G(x) = 0 . . . 0

Distinguisher

A = [ all bits equal to 0]

Analysis

Prx←Un[A(G(x)) = 1] = 1

Pry←Up(n)
[A(y) = 1] =

1

2p(n)

1−
1

2p(n)
≈ 1 ��≤ negl
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Is the Following PRG Secure?

PRG

G(x) = x | OR(bits of x)
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Do PRGs Exist?

▶ We don’t know...

▶ Most of cryptography requires the unproven assumption
that P ≠ NP

▶ We will assume certain algorithms are PRGs
▶ This is what is done in practice

▶ Can construct PRGs from weaker assumptions
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So far

▶ We saw that there are some inherent limitations if we want
perfect secrecy

▶ In particular, key must be as long as the message

▶ We defined computational secrecy, a relaxed notion of
security

▶ We defined PRG

▶ Can we use computational secrecy + PRG to overcome
prior limitations?
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End

References: from Page 60 until the last paragraph of Page 64
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