Zero-Knowledge Interactive Proofs

Michele Ciampi

THE UNIVERSITY

Two parties for a proof

- Merlin (prover) has unbounded resources
- Arthur (verifier) has limited resources

Theorem/statement **x** π

The proof is efficient: **x** is an NP statement and π is its certificate/witness/proof

Graph Isomorphism

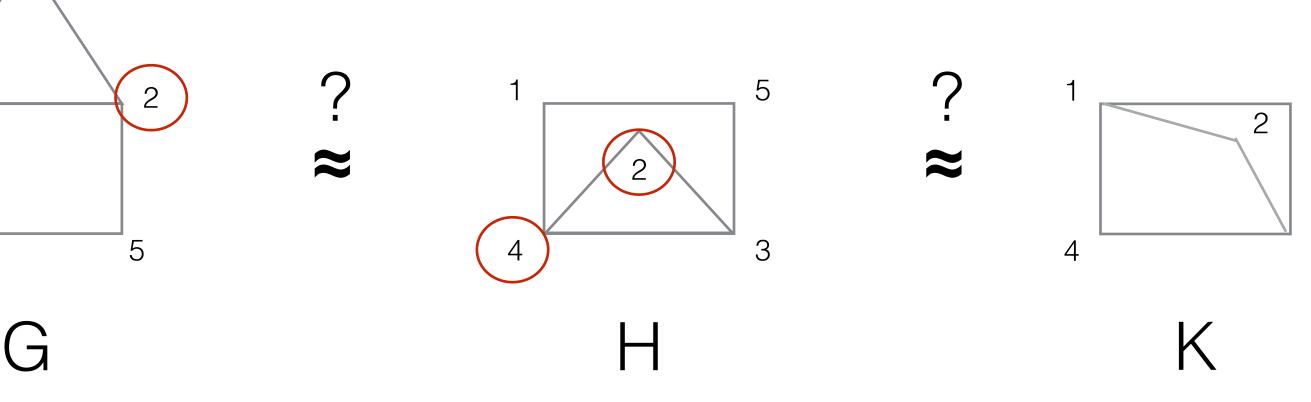
such that any two vertices u and v of **G** are adjacent in **G** if and only if $\pi(u)$ and $\pi(v)$ are adjacent in **H**.

З

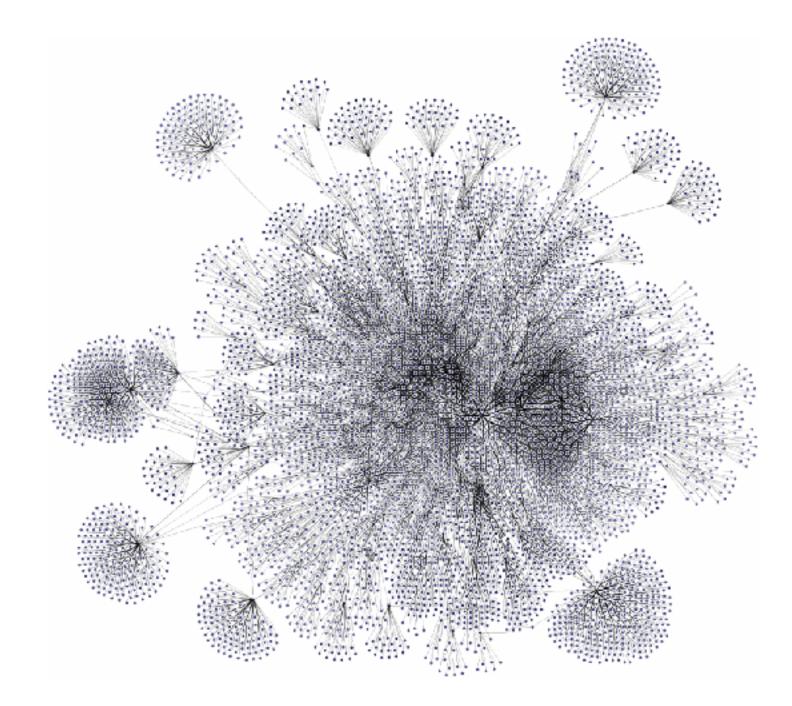
4



An isomorphism of graphs G and H is a bijection (permutation) π between the vertex sets of G and H π : V(**G**) —> V(**H**)

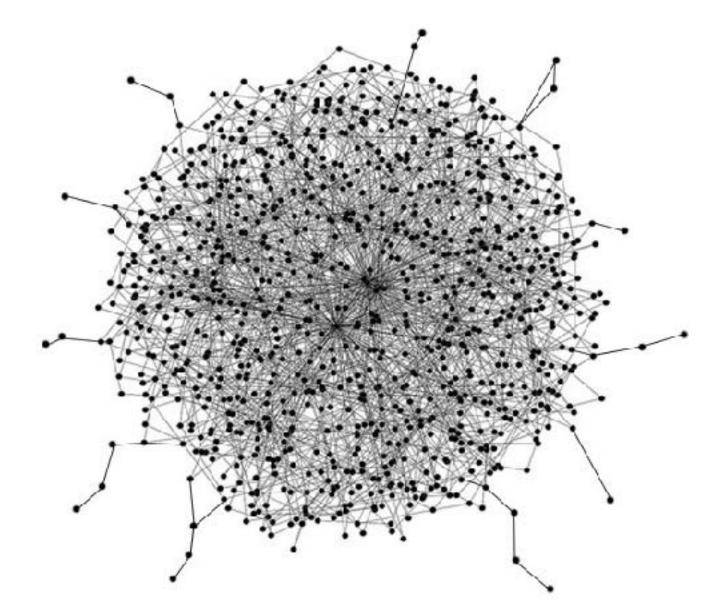


Graph Isomorphism

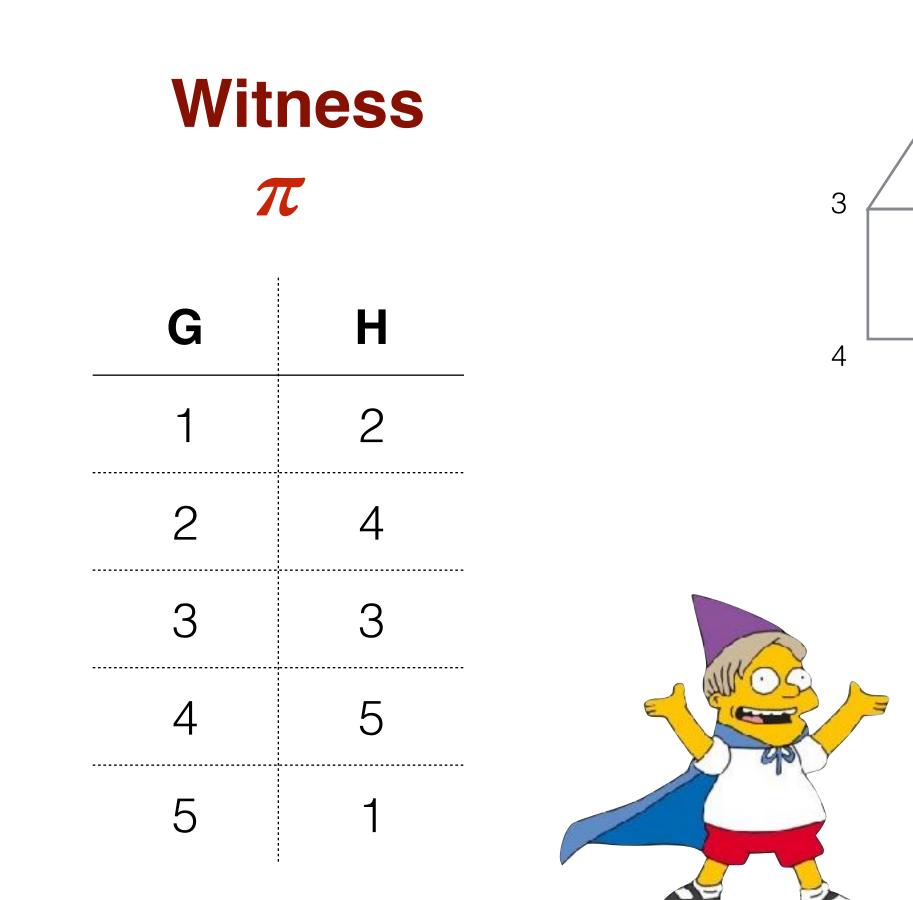


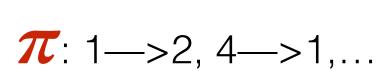
The problem belongs to NP

We do not know if it is in P: best known algorithm is quasi-polynomial time



Graph Isomorphism



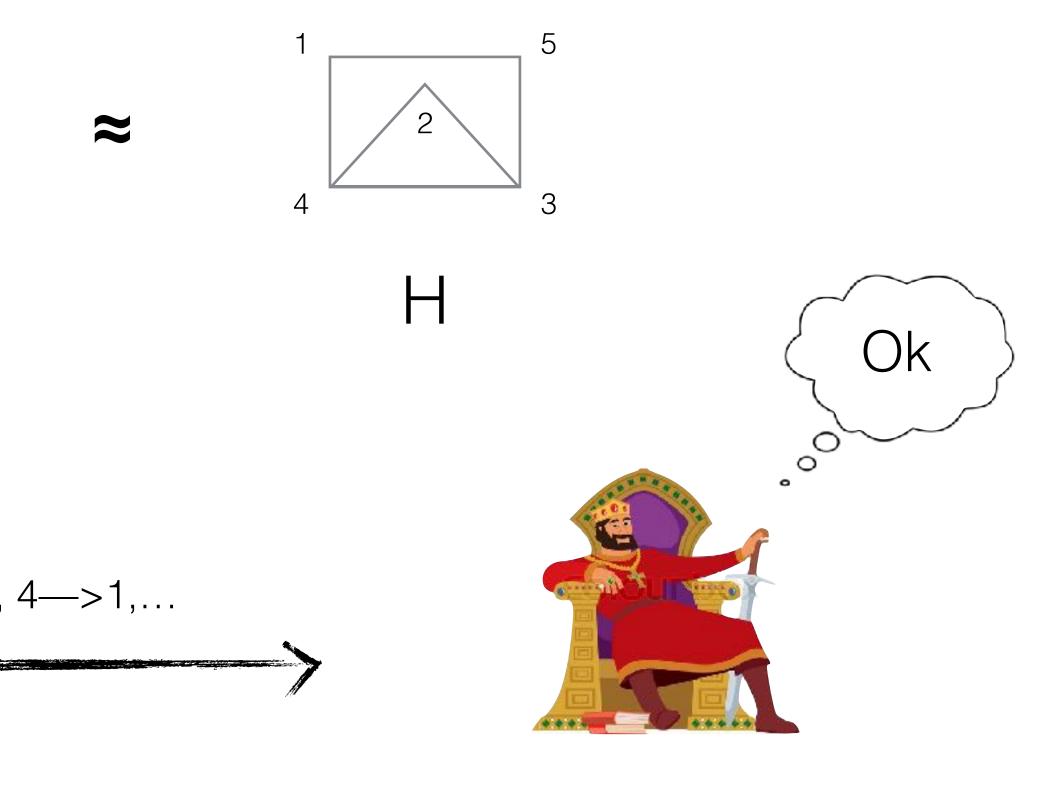


2

5

G

Thm



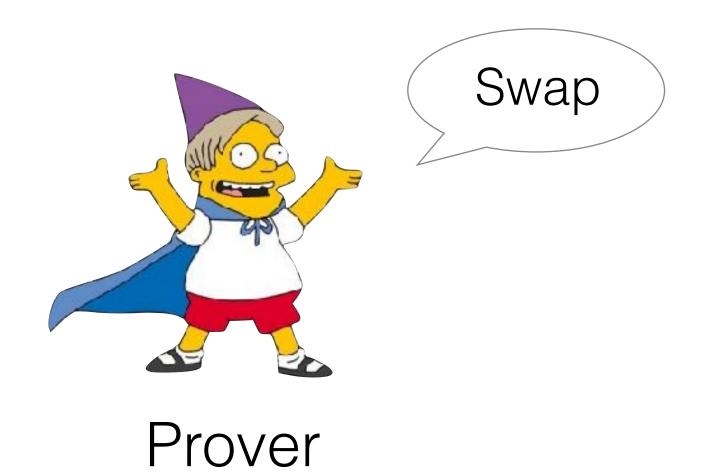
Interactive Proofs

- Suppose now that I want to prove that two graphs are **not isomorphic** or that an equation has no solutions.
- Introduced by Goldwasser, Micali and Rackoff
 - A proof is described as a game between a prover and a verifier
 - The theorem is true if and only if the prover wins the game always.
 - If the theorem is false then the prover loses the game with 50% probability

Prover (Merlin)

Verifier (Arthur)

Interactive Proofs



A simple example first

Verifier

Interactive Proofs

Prover

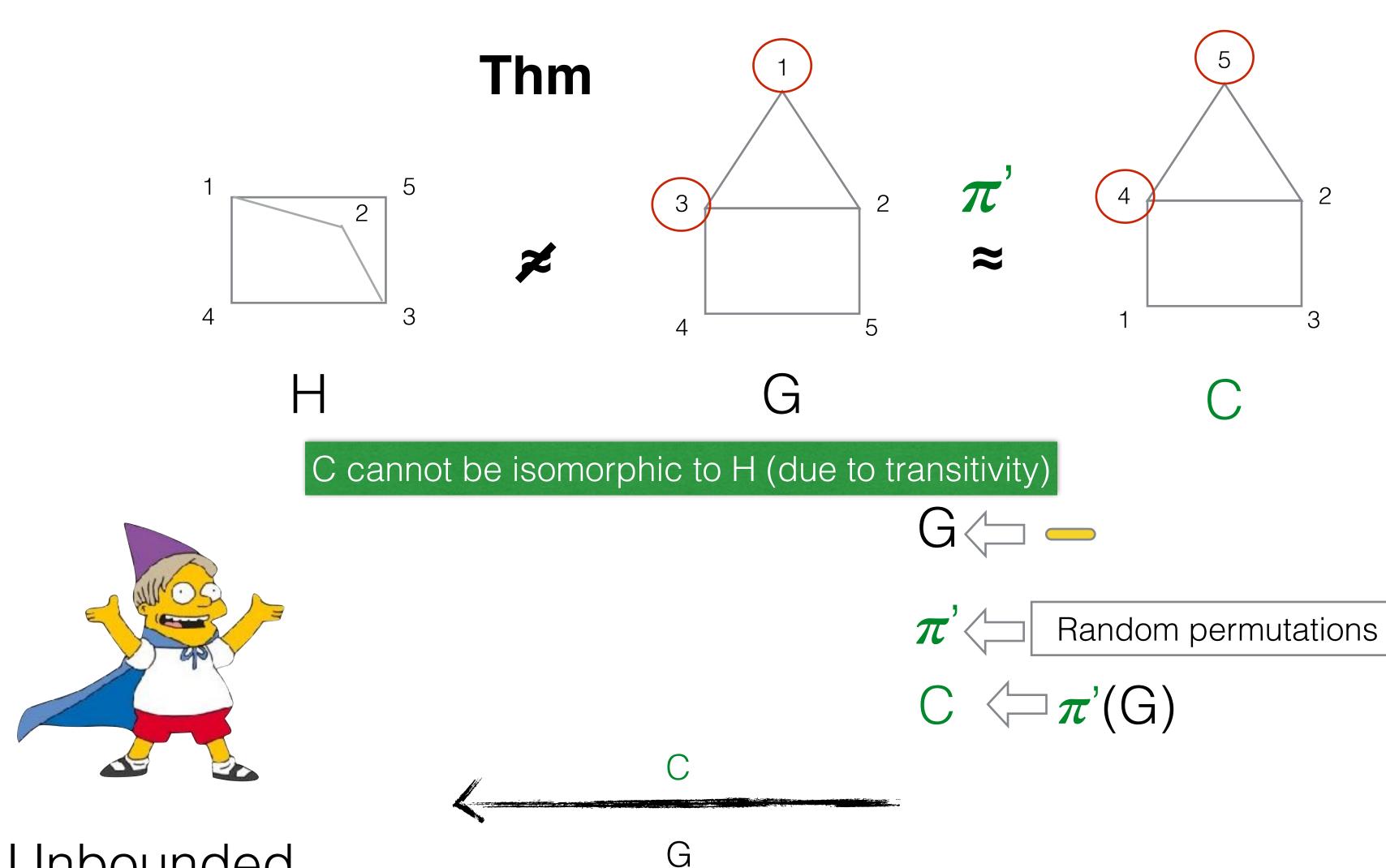
If the pencils are both red, then the prover convinces the verifier with a 50% probability

A simple example first

Verifier

We can repeat the proof many times to make this probability small

Graph Non-Isomorphism



Unbounded

π '		
G	С	
	5	
2	2	
3	4	
4	1	
5	3	

Poly

.

Interactive Proofs (formal definition)

completeness bound $c(\cdot)$ and soundness bound $s(\cdot)$, if

• (modified) completeness: for every $x \in L$,

•

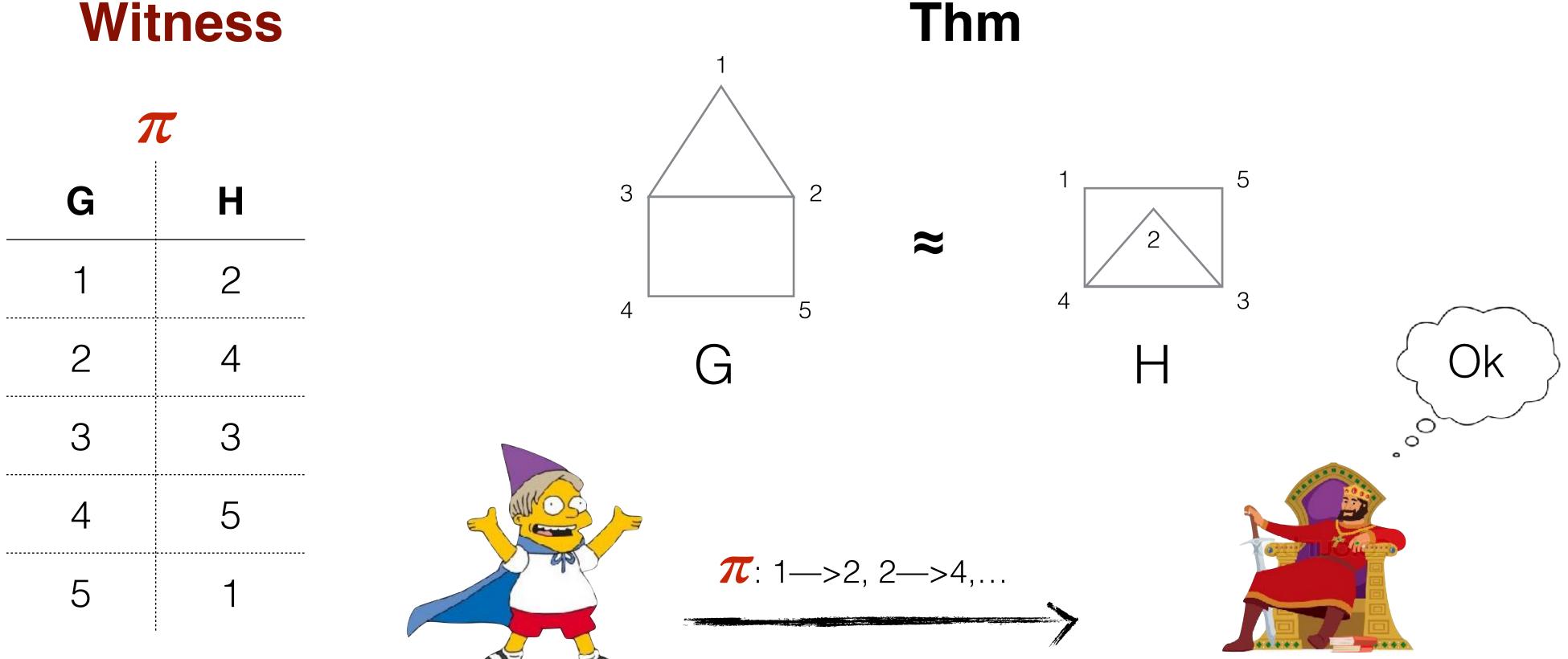
 $\Pr[\langle B, V \rangle(x) = 1] \leq s(|x|)$

Definition 4.2.6 (Generalized Interactive Proof): Let $c, s : \mathbb{N} \to \mathbb{R}$ be functions satisfying $c(n) > s(n) + \frac{1}{p(n)}$ for some polynomial $p(\cdot)$. An interactive pair (P, V) is called a (generalized) interactive proof system for the language L, with

 $\Pr[\langle P, V \rangle(x) = 1] \ge c(|x|)$

(modified) soundness: for every $x \notin L$ and every interactive machine B,

In the previous example c(|x|)=1 and s(|x|)=1/2



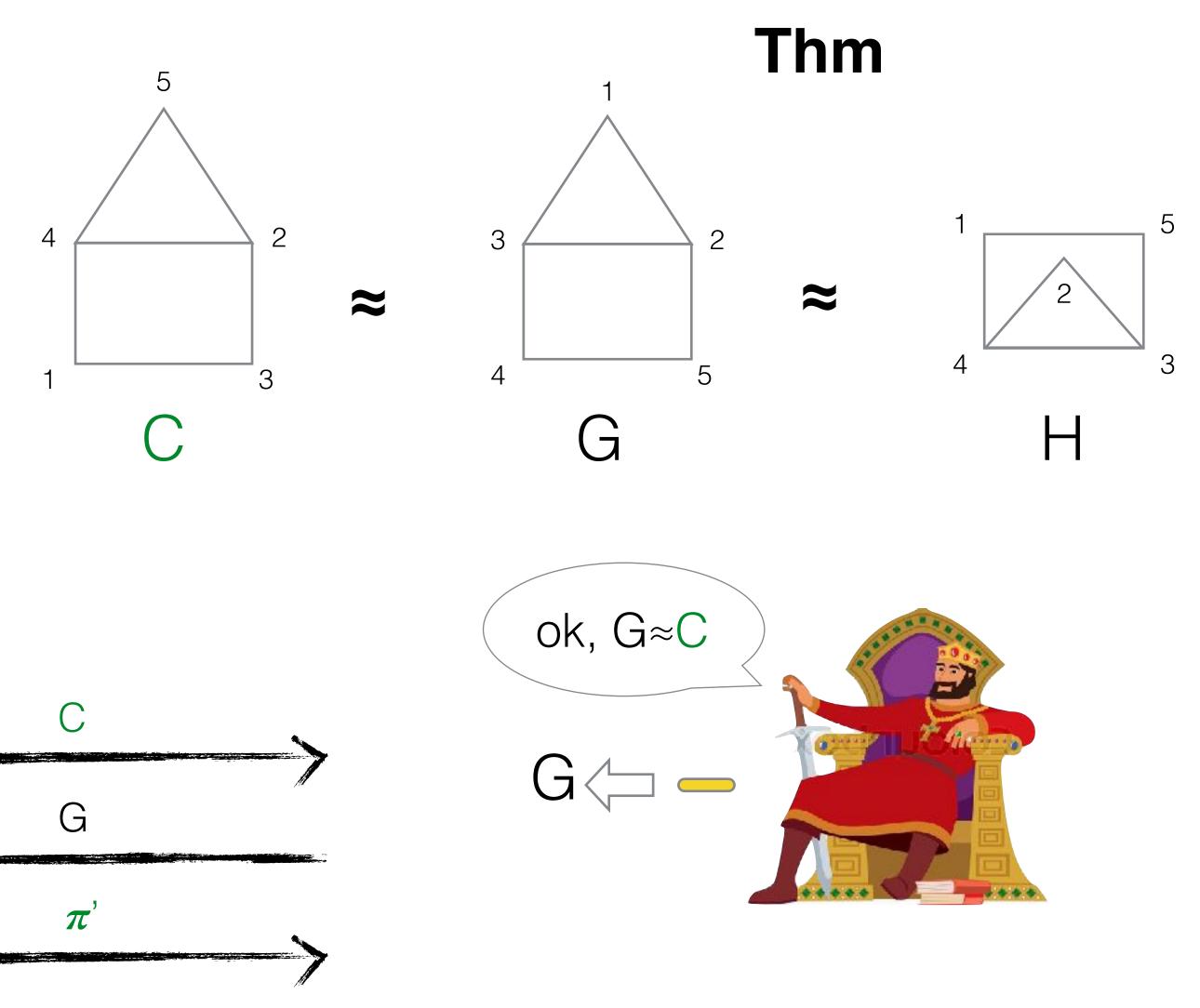
- How much knowledge is transmitted to the verifier? •
- We would like to transmit only one bit: 1 if the theorem is true and 0 otherwise. \bullet
- E.g. For the case of graph isomorphism, the prover does not want to disclose the witness

Zero-Knowledge (ZK)

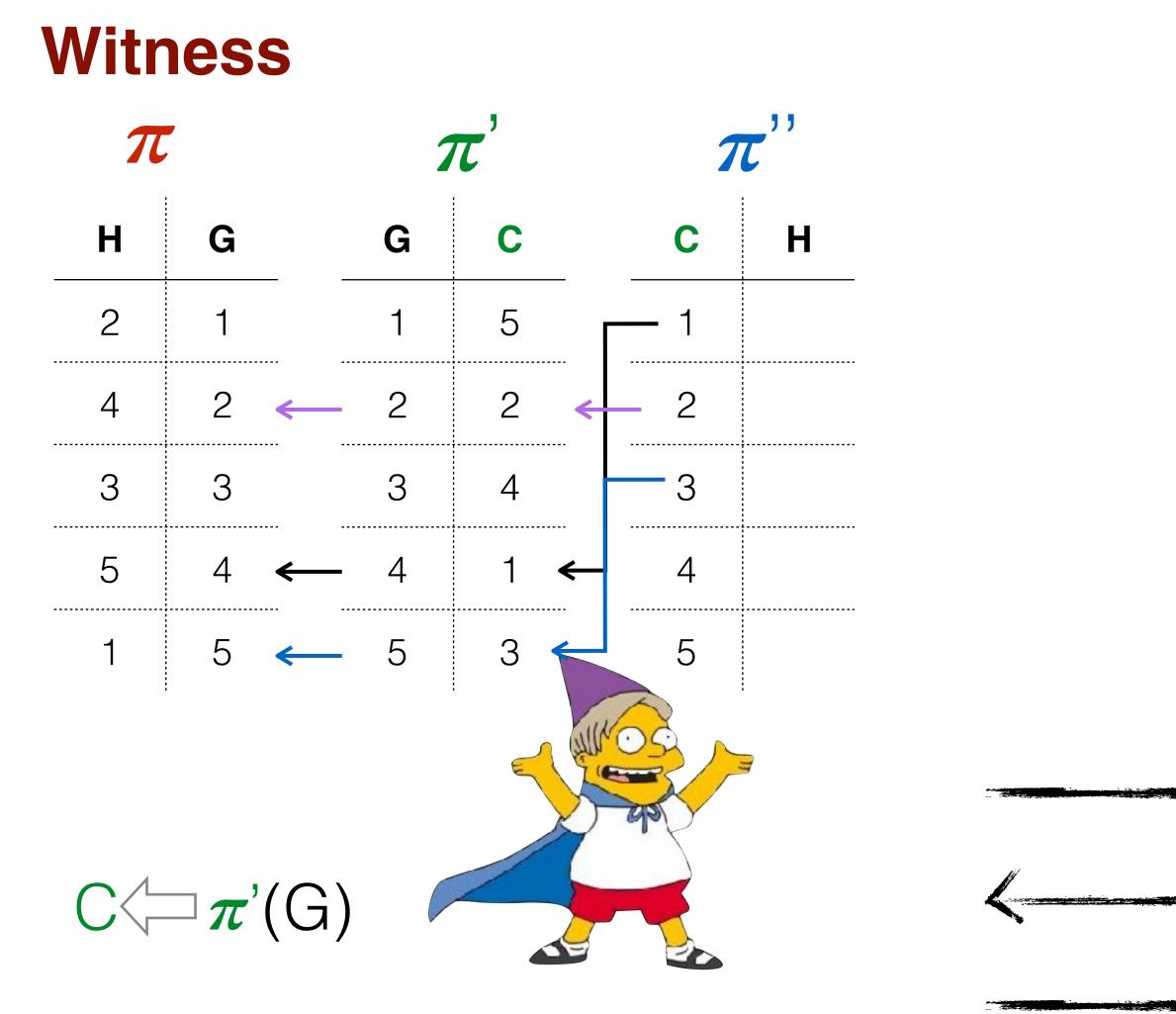
ZK for Graph Isomorphism

Witness

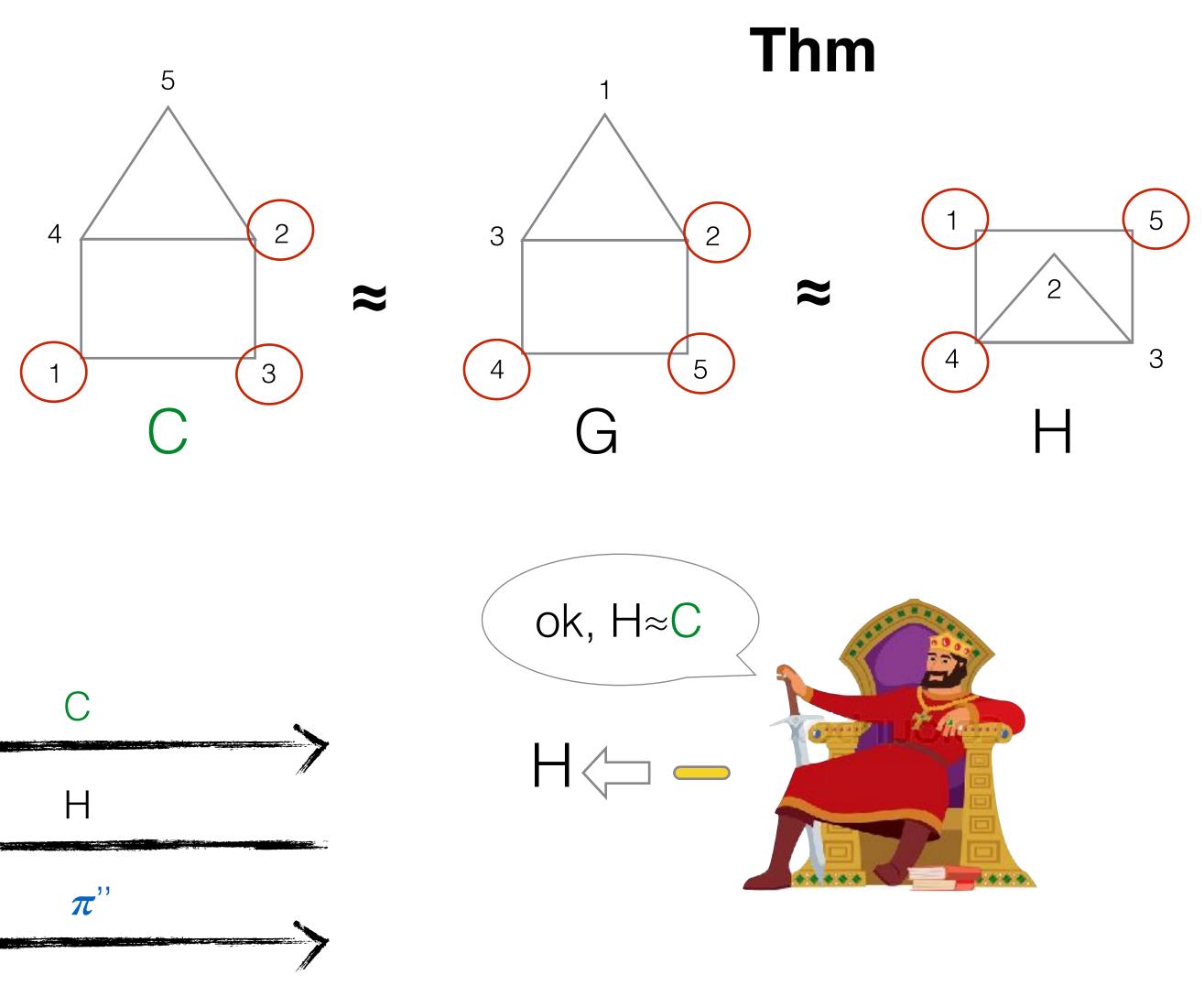
π			τ	
G	Η	G	С	
1	2	1	5	
2	4	2	2	
3	3	3	4	
4	5	4	1	
5	1	5	3	
2<⊢	⊐ π '(G	à)		ap (



ZK for Graph Isomorphism



If the graphs are non-isomorphic then the prover convinces the verifier with a 50% probability



We can repeat the proof many times to make this probability small

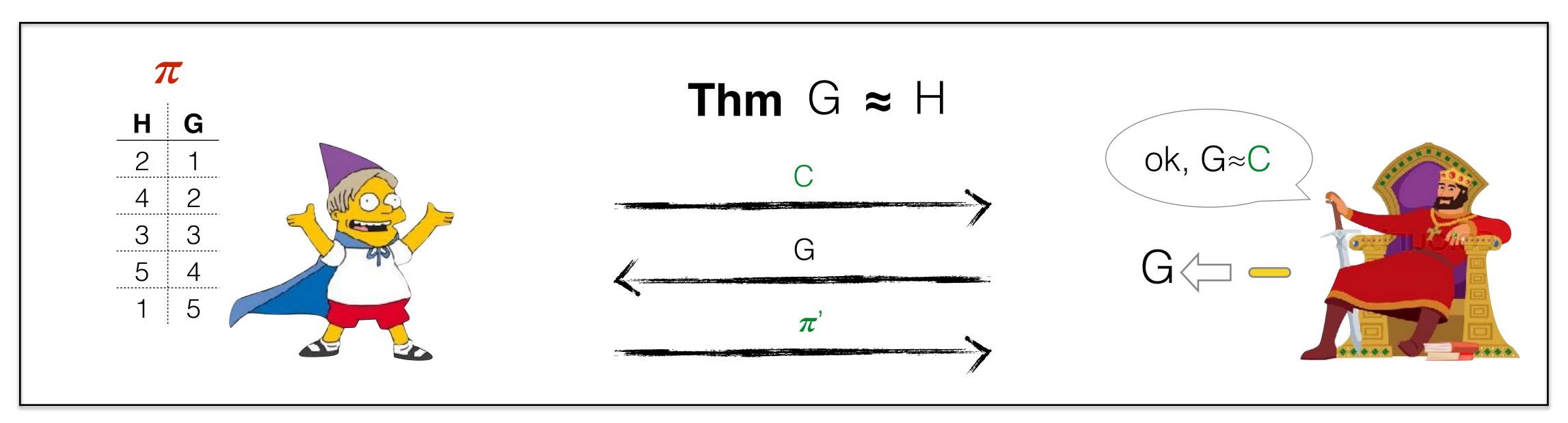
Zero Knowledge

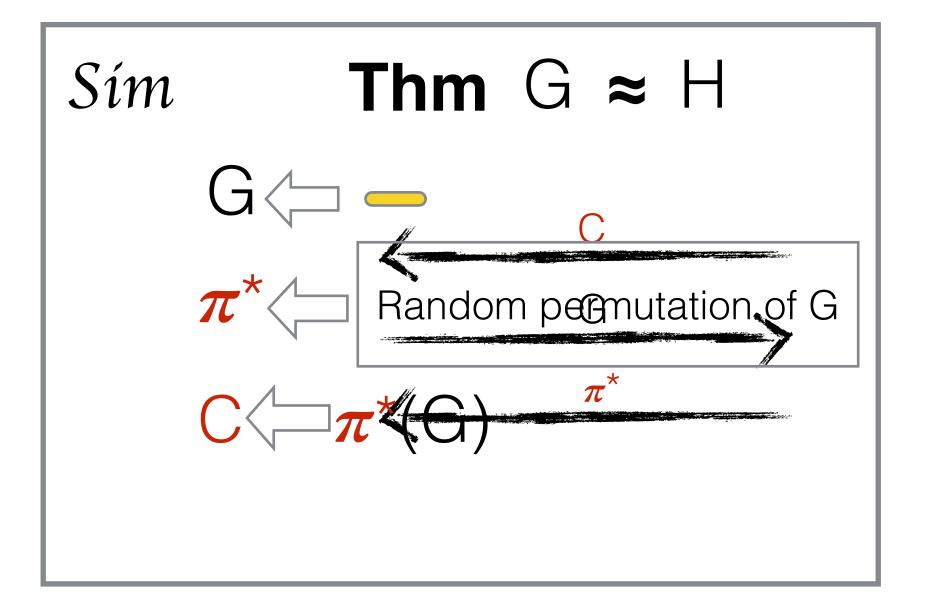
- - knows only that the theorem is true
 - is efficient
 - the verifier is honest)
 - has black-box access to the adversary

• The notion of zero knowledge requires the existence of a simulator **S** that:

generates a transcript that is distributed similarly* to the real one (when

Honest-Verifier ZK for Graph Isomorphism





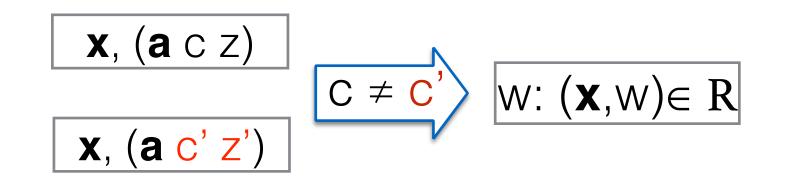
• Completeness

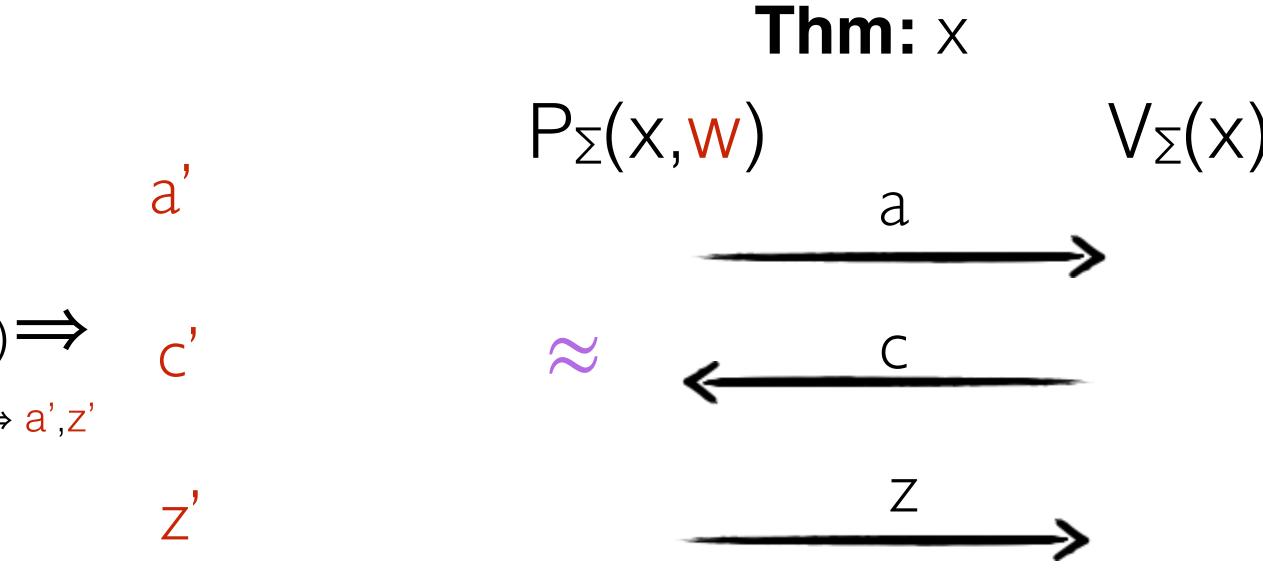
Computational

Honest Verifier Zero-Knowledge $HVZK_{Sim}(x) \Rightarrow$ • Special Honest Verifier Zero-Knowledge $SHVZK_{Sim}(x,c) \Rightarrow a',z'$

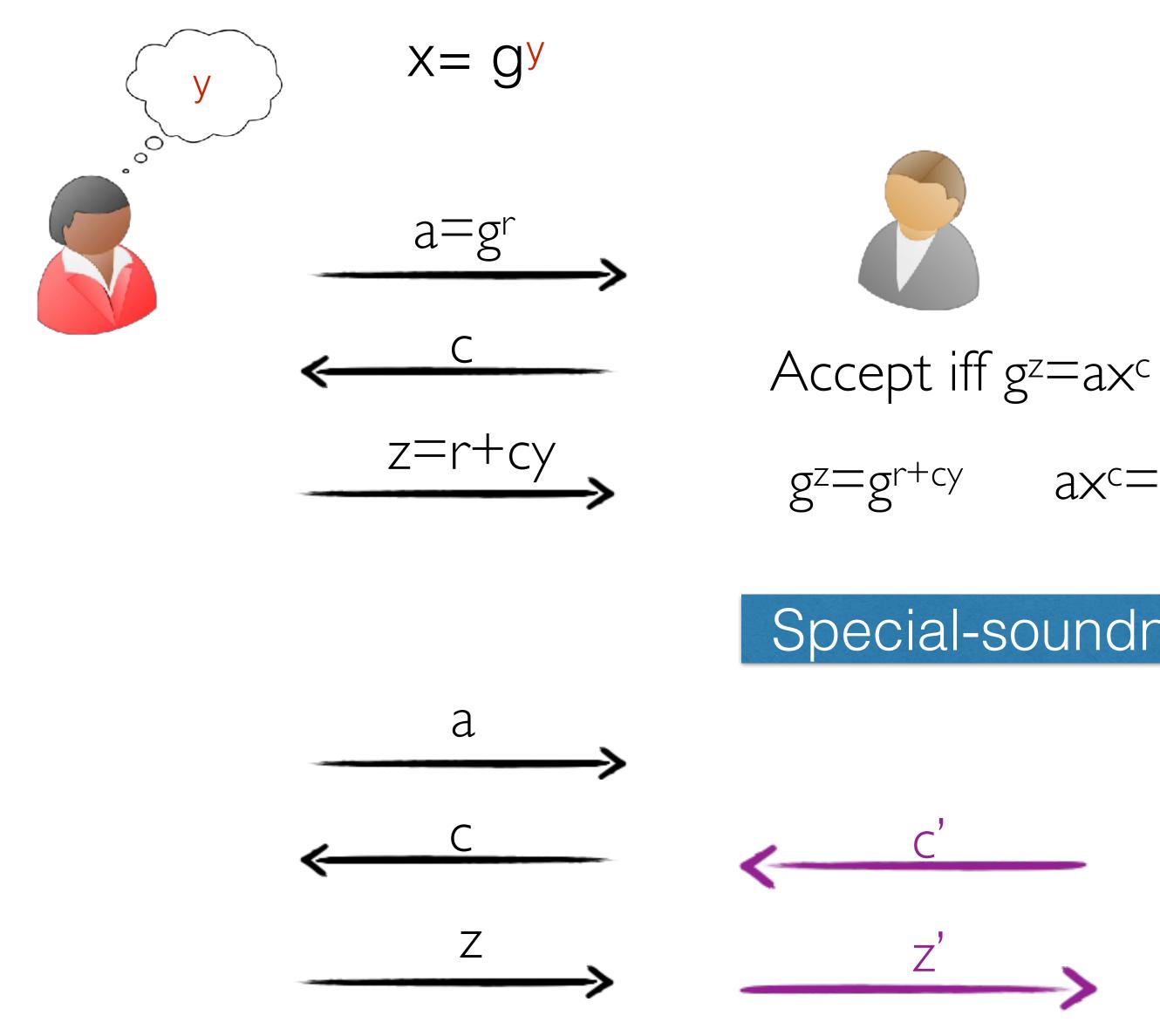
Computational

• Special Soundness

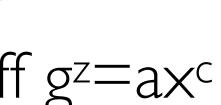




Schnorr protocol

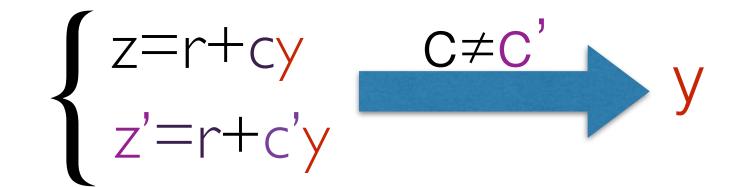


Let G be a group of order q, with generator g

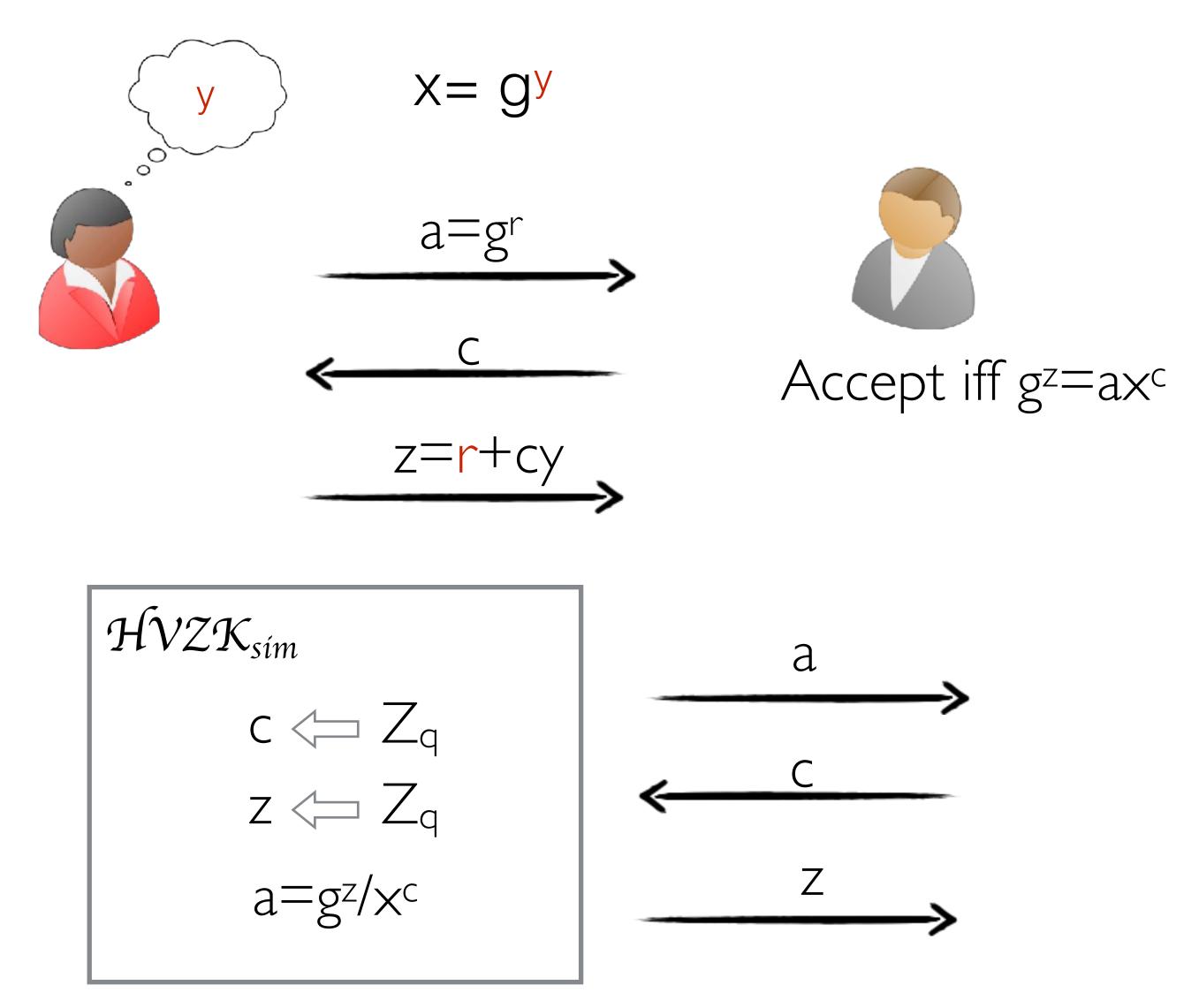


g^z=g^{r+cy} ax^c=g^rg^{yc}=g^{r+cy}

Special-soundness



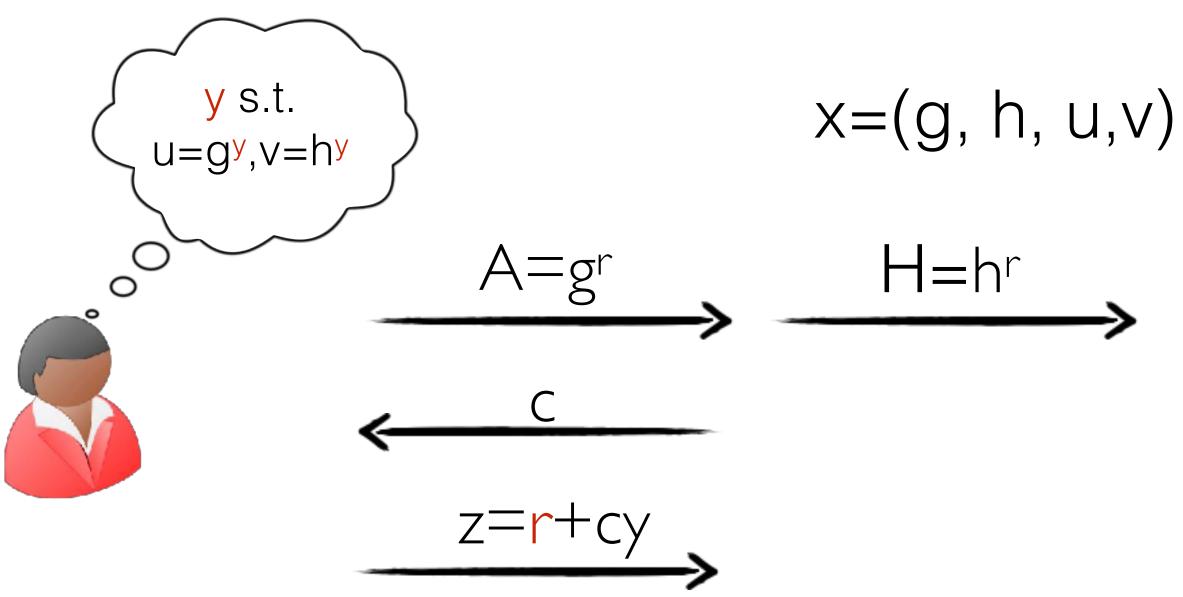
Schnorr protocol

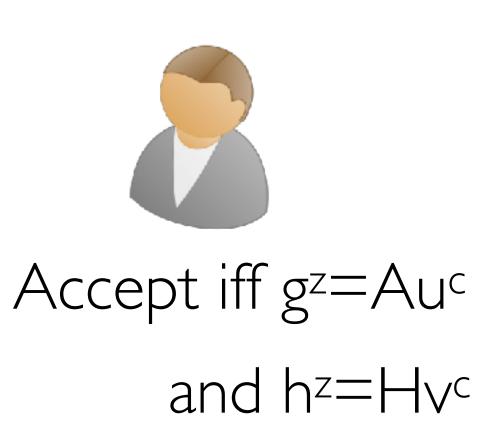


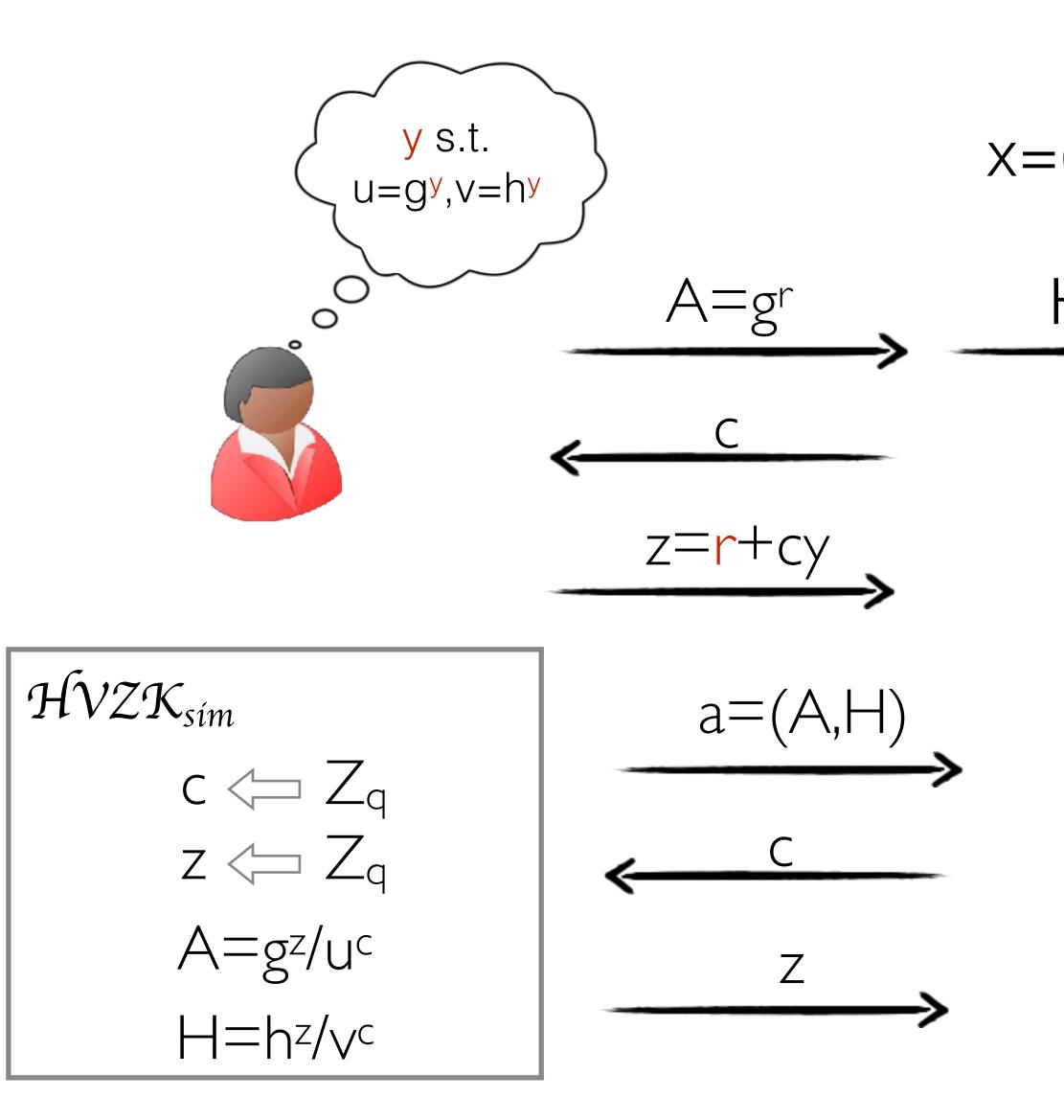
$b < --\{0, 1\}$ if b=0 then $T=(g, h, u=g^y, v=h^y)$ else $T=(g, h, u=g^y, v=h^w)$ with $y\neq w$

 $u=g^y, v=h^y$

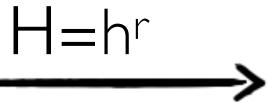
Let G be a group of order q, with generators g and h

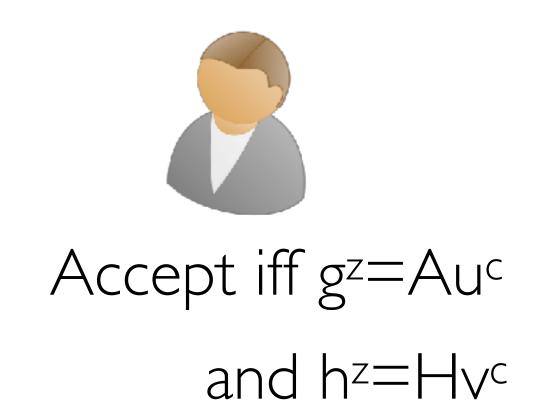


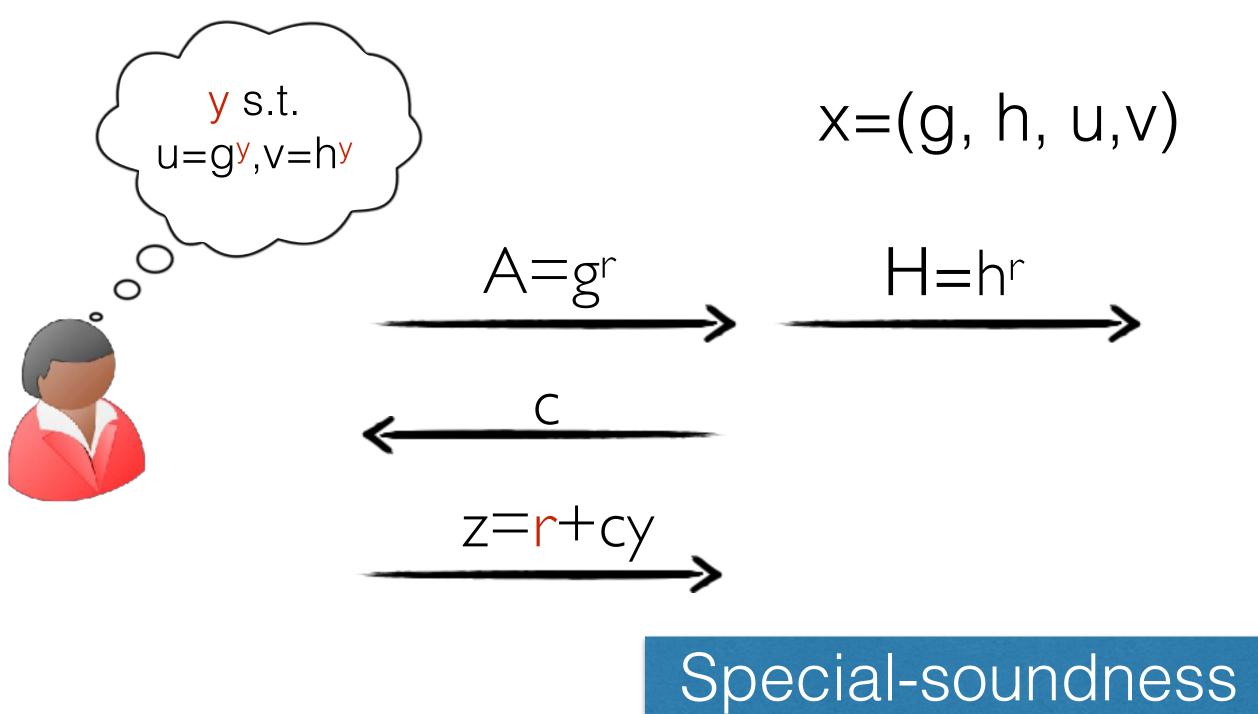


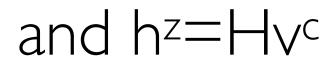


x=(g, h, u,v)









Exactly the same as the one for the Dlog protocol

Why do we care?

- prover and verifier)
- CCA-encryption scheme
- Multi-party computation
- Identification schemes
- Privacy-preserving blockchains

• We know how to construct ZK proofs for any NP-language (with both efficient

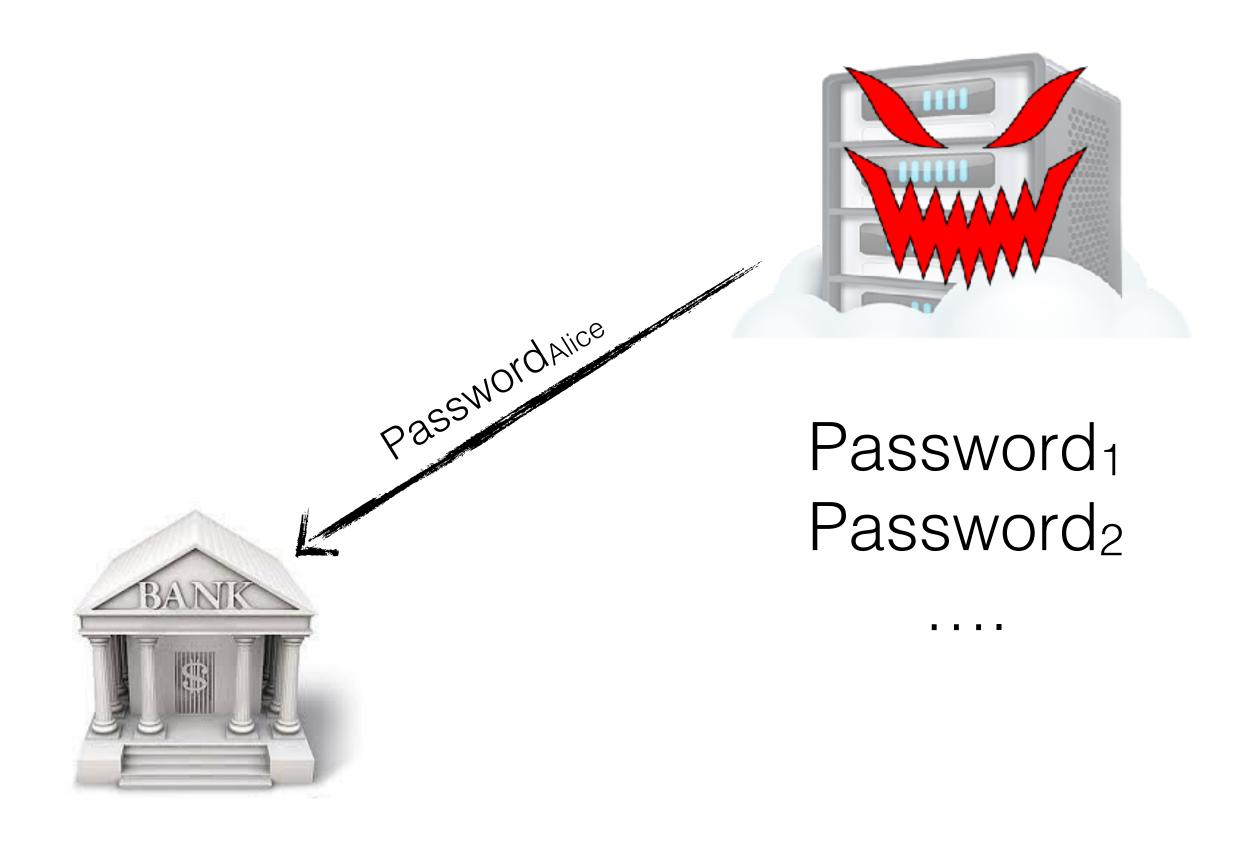
Identification scheme

Password_{Alice}

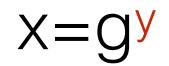
Password₁ Password₂

. . . .

Identification scheme



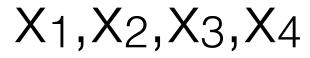
Identification scheme

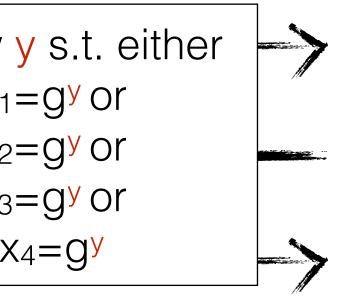


Х

Х

Identification scheme **y**, X₁=**g**^y I know y s.t. either X2 $x_1 = g^y$ or x₂=g^y or x₃=g^y or 1111111 x4=g X3 **X**4 2



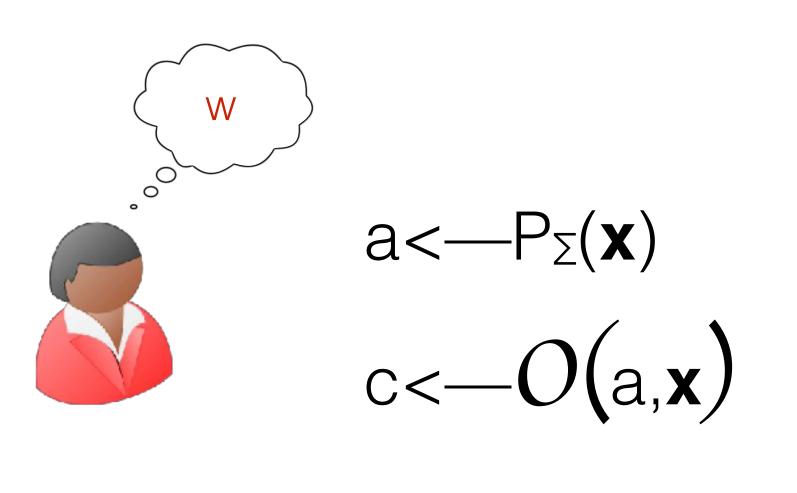


Summary/Notes

- Sigma-Protocol
- Every language in NP has a sigma-protocol
- argument?

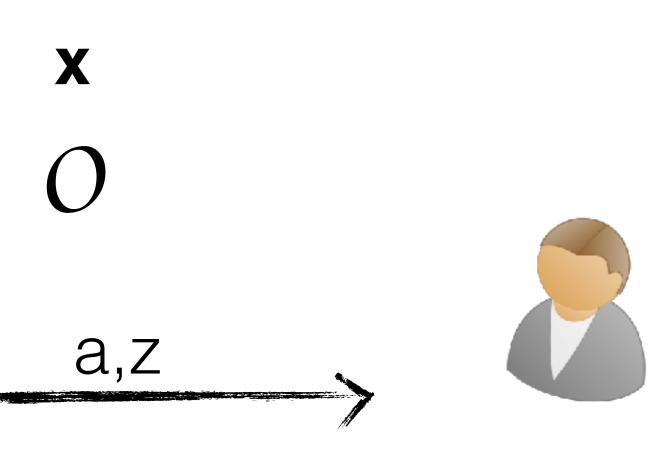
Can we circumvent the 3-round impossibility and design an efficient non-interactive

How do we make non-interactive proofs?

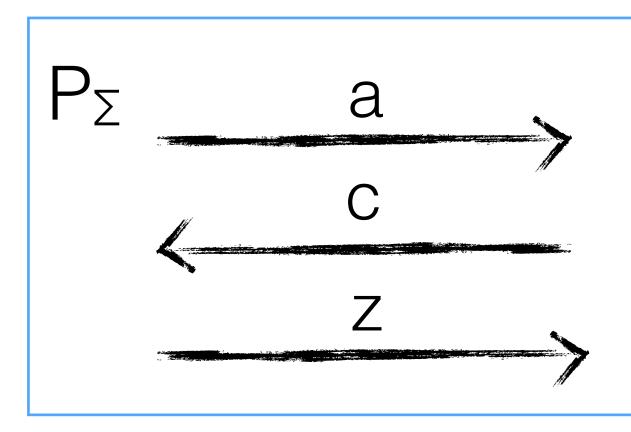


 $Z < -P_{\Sigma}(\mathbf{X}, \mathbf{W}, \mathbf{C})$

- Fiat-Shamir transform
- in practice O is a hash function (e.g.SHA2)
- Adds very little overhead to the starting sigma-protocol
- Used in practice for identification scheme, signatures, SNARKS, ...



 $c < -O(a, \mathbf{x})$ V_∑(a,c,z)=1



- Non-interactive zero-knowledge (NIZK) proofs: length of the proof and verification time dependent on the NP language
 - Known from standard falsifiable assumptions
 - Setup is needed (just RO would suffice)
- SNARKs proofs: length of the proof depends on the security parameter and the verification time is dependent on the instance only
 - Setup is needed (even in the RO model)
 - Based on non-falsifiable assumptions (Knowledge of Exponent) Assumptions)

Conclusions

References from the book of Goldreich Oded: Foundations of Cryptography: Volume 1, Basic Tools (see the link on learn)

- Sec. 4.2 until (included) Sec. 4.2.2 with no proofs
- Sec. 4.3 until (included) Sec. 4.3.2 with no proofs
- Sec. 4.7 until (included) Definition 4.7.2 with no proofs

More References on Sigma-Protocols: On Sigma-Protocols. Ivan Damgaard. https:// www.cs.au.dk/~ivan/Sigma.pdf

End