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Two parties for a proof
• Merlin (prover) has unbounded resources   
• Arthur (verifier) has limited resources

𝝅

The proof is efficient: x is an NP statement and 𝝅 is its certificate/witness/proof

Theorem/statement x



Graph Isomorphism
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An isomorphism of graphs G and H is a bijection (permutation) 𝝅 between the vertex sets of G and H 
𝝅: V(G) —> V(H) 

such that any two vertices u and v of G are adjacent in G if and only if 𝝅(u) and 𝝅(v) are adjacent in H.
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Graph Isomorphism
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The problem belongs to NP

We do not know if it is in P: best known algorithm is  
quasi-polynomial time 



Graph Isomorphism
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Interactive Proofs 
• Suppose now that I want to prove that two graphs are not isomorphic or that an 

equation has no solutions. 

• Introduced by Goldwasser, Micali and Rackoff 

• A proof is described as a game between a prover and a verifier 

• The theorem is true if and only if the prover wins the game always. 

• If the theorem is false then the prover loses the game with 50% probability

Prover (Merlin) Verifier (Arthur)



Prover Verifier

Swap

Interactive Proofs 
A simple example first



Prover Verifier

Did not swap

Interactive Proofs 
A simple example first

If the pencils are both red, then the prover convinces the 
verifier with a 50% probability

We can repeat the proof many times to make this probability 
small



Graph Non-Isomorphism
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Interactive Proofs (formal definition)

In the previous example c(|x|)=1 and s(|x|)=1/2 



Zero-Knowledge (ZK)

• How much knowledge is transmitted to the verifier? 
• We would like to transmit only one bit: 1 if the theorem is true and 0 otherwise. 
• E.g. For the case of graph isomorphism, the prover does not want to disclose the witness
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ZK for Graph Isomorphism

G 
C     𝝅’(G)

𝝅’

G

C

1

23

4 5

2

34

51

≈

G H

Thm

G H

1 2

2 4

3 3

4 5

5 1

𝝅
Witness 5

24

1 3

C

≈
G C

1 5

2 2

3 4

4 1

5 3

𝝅’

ok, G≈C



ZK for Graph Isomorphism
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If the graphs are non-isomorphic then the prover convinces 
the verifier with a 50% probability

We can repeat the proof many times to make this probability 
small



• The notion of zero knowledge requires the existence of a simulator S that: 

• knows only that the theorem is true 

• is efficient 

• generates a transcript that is distributed similarly* to the real one (when 
the verifier is honest) 

• has black-box access to the adversary

Zero Knowledge 
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Sigma protocols

• Completeness 

• Honest Verifier Zero-Knowledge   HVZKSim(x)⇒

• Special Soundness 

PΣ(x,w) VΣ(x)
a

c

 z
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x, (a c z)

x, (a c’ z’)
w: (x,w)∈ Rc ≠ c’

≡

Thm: x

Special Honest Verifier Zero-Knowledge SHVZKSim(x,c)⇒ a’,z’
≈

Computational 

Computational 



Schnorr protocol
x= gy
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 gz=gr+cy  axc=grgyc=gr+cy 

Let G be a group of order q, 
with generator g



Schnorr protocol
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Sigma Protocol for Diffie-Hellman tuples

Let G be a group of order q, 
with generators g and hx=(g, h, u,v) u=gy, v=hyIs a DH tuple if

b<—{0,1} 
if b=0 then 
   T=(g, h, u=gy, v=hy) 
else  
   T=(g, h, u=gy, v=hw) with y≠w 

T



Sigma Protocol for Diffie-Hellman tuples

x=(g, h, u,v)
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u=gy,v=hy

Accept iff gz=Auc 

H=hr

and hz=Hvc



Sigma Protocol for Diffie-Hellman tuples

x=(g, h, u,v)
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u=gy,v=hy

Accept iff gz=Auc 
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HVZKHVZKsim
c Zq 
z Zq 
A=gz/uc

a=(A,H)
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Sigma Protocol for Diffie-Hellman tuples

x=(g, h, u,v)

A=gr

c

 z=r+cy

y s.t. 
u=gy,v=hy

Accept iff gz=Auc 

H=hr

and hz=Hvc

Special-soundness

Exactly the same as the one for the Dlog protocol



Why do we care?
• We know how to construct ZK proofs for any NP-language (with both efficient 

prover and verifier) 

• CCA-encryption scheme 

• Multi-party computation 

• Identification schemes 

• Privacy-preserving blockchains



Identification scheme
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Identification scheme
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Identification scheme

x=gy x

x



Identification scheme
y, x1=gy

x1,x2,x3,x4

I know y s.t. either  
x1=gy or 
x2=gy or 
x3=gy or 
x4=gy

x2

x3

x4



Summary/Notes

• Sigma-Protocol 
• Every language in NP has a sigma-protocol  
• Can we circumvent the 3-round impossibility and design an efficient non-interactive 

argument?



How do we make non-interactive proofs?

Ow

a<—PΣ(x)

x

c<—O(a,x)
z<—PΣ(x,w,c)

a,z VΣ(a,c,z)=1

c<—O(a,x)

• Fiat-Shamir transform 

• in practice O is a hash function (e.g.SHA2)

z
c
aPΣ VΣ

• Adds very little overhead to the starting sigma-protocol 
• Used in practice for identification scheme, signatures, 

SNARKS, …



Conclusions

• Non-interactive zero-knowledge (NIZK) proofs: length of the proof and 
verification time dependent on the NP language   

• Known from standard falsifiable assumptions 
• Setup is needed (just RO would suffice)

• SNARKs proofs: length of the proof depends on the security parameter 
and the verification time is dependent on the instance only 

• Setup is needed (even in the RO model) 
• Based on non-falsifiable assumptions (Knowledge of Exponent 

Assumptions)



End

References from the book of Goldreich Oded:  Foundations of Cryptography: Volume 1, Basic 
Tools (see the link on learn) 

• Sec. 4.2 until (included) Sec. 4.2.2 with no proofs 
• Sec. 4.3 until (included) Sec. 4.3.2 with no proofs 
• Sec. 4.7 until (included) Definition 4.7.2 with no proofs 

More References on Sigma-Protocols: On Sigma-Protocols. Ivan Damgaard. https://
www.cs.au.dk/~ivan/Sigma.pdf 


