
Zero-Knowledge Interactive Proofs

Michele Ciampi

Two parties for a proof
• Merlin (prover) has unbounded resources
• Arthur (verifier) has limited resources

𝝅

The proof is efficient: x is an NP statement and 𝝅 is its certificate/witness/proof

Theorem/statement x

Graph Isomorphism

1

23

4 5

G

2

34

51

H

G H

1 2

2 4

3 3

4 5

5 1

An isomorphism of graphs G and H is a bijection (permutation) 𝝅 between the vertex sets of G and H
𝝅: V(G) —> V(H)

such that any two vertices u and v of G are adjacent in G if and only if 𝝅(u) and 𝝅(v) are adjacent in H.

≈
?

𝝅

34

51

K

2
≈
?

Graph Isomorphism

≈
?

The problem belongs to NP

We do not know if it is in P: best known algorithm is
quasi-polynomial time

Graph Isomorphism
1

23

4 5

2

34

51

≈

G H

Thm

𝝅: 1—>2, 4—>1,…

Ok

G H

1 2

2 4

3 3

4 5

5 1

𝝅
Witness

Interactive Proofs
• Suppose now that I want to prove that two graphs are not isomorphic or that an

equation has no solutions.

• Introduced by Goldwasser, Micali and Rackoff

• A proof is described as a game between a prover and a verifier

• The theorem is true if and only if the prover wins the game always.

• If the theorem is false then the prover loses the game with 50% probability

Prover (Merlin) Verifier (Arthur)

Prover Verifier

Swap

Interactive Proofs
A simple example first

Prover Verifier

Did not swap

Interactive Proofs
A simple example first

If the pencils are both red, then the prover convinces the
verifier with a 50% probability

We can repeat the proof many times to make this probability
small

Graph Non-Isomorphism
1

23

4 534

51

GH

Thm

Unbounded Poly

≈

G

𝝅’ Random permutations

C 𝝅’(G)

G

C

2

G C

1 5

2 2

3 4

4 1

5 3

𝝅’

≈
𝝅’

5

24

1 3

C
C cannot be isomorphic to H (due to transitivity)

Interactive Proofs (formal definition)

In the previous example c(|x|)=1 and s(|x|)=1/2

Zero-Knowledge (ZK)

• How much knowledge is transmitted to the verifier?
• We would like to transmit only one bit: 1 if the theorem is true and 0 otherwise.
• E.g. For the case of graph isomorphism, the prover does not want to disclose the witness

1

23

4 5

2

34

51

≈

G H

Thm

𝝅: 1—>2, 2—>4,…

Ok

G H

1 2

2 4

3 3

4 5

5 1

𝝅
Witness

ZK for Graph Isomorphism

G
C 𝝅’(G)

𝝅’

G

C

1

23

4 5

2

34

51

≈

G H

Thm

G H

1 2

2 4

3 3

4 5

5 1

𝝅
Witness 5

24

1 3

C

≈
G C

1 5

2 2

3 4

4 1

5 3

𝝅’

ok, G≈C

ZK for Graph Isomorphism

H
C 𝝅’(G)

𝝅’’

H

C

1

23

4 5

2

34

51

≈

G H

Thm

H G

2 1

4 2

3 3

5 4

1 5

𝝅
Witness 5

24

1 3

C

≈
G C

1 5

2 2

3 4

4 1

5 3

𝝅’

ok, H≈C

C H

1 5

2 4

3 1

4 3

5 2

𝝅’’

§

If the graphs are non-isomorphic then the prover convinces
the verifier with a 50% probability

We can repeat the proof many times to make this probability
small

• The notion of zero knowledge requires the existence of a simulator S that:

• knows only that the theorem is true

• is efficient

• generates a transcript that is distributed similarly* to the real one (when
the verifier is honest)

• has black-box access to the adversary

Zero Knowledge

𝝅*

G

C

Honest-Verifier ZK for Graph Isomorphism

≈G HThm

Sim
G
𝝅* Random permutation of G

C 𝝅*(G)

H G
2 1
4 2
3 3
5 4
1 5

𝝅

G
𝝅’

G

C ok, G≈C

≈G HThm

Sigma protocols

• Completeness

• Honest Verifier Zero-Knowledge HVZKSim(x)⇒

• Special Soundness

PΣ(x,w) VΣ(x)
a

c

 z

a’

c’

 z’

x, (a c z)

x, (a c’ z’)
w: (x,w)∈ Rc ≠ c’

≡

Thm: x

Special Honest Verifier Zero-Knowledge SHVZKSim(x,c)⇒ a’,z’
≈

Computational

Computational

Schnorr protocol
x= gy

a=gr

c

 z=r+cy

y

a

c

 z

Special-soundness

c’

z’
{ z=r+cy

z’=r+c’y
c≠c’ y

Accept iff gz=axc

 gz=gr+cy axc=grgyc=gr+cy

Let G be a group of order q,
with generator g

Schnorr protocol
x= gy

a=gr

c

 z=r+cy

y

HVZK

HVZKsim

Accept iff gz=axc

c Zq
z Zq
a=gz/xc

a

c

 z

Sigma Protocol for Diffie-Hellman tuples

Let G be a group of order q,
with generators g and hx=(g, h, u,v) u=gy, v=hyIs a DH tuple if

b<—{0,1}
if b=0 then
 T=(g, h, u=gy, v=hy)
else
 T=(g, h, u=gy, v=hw) with y≠w

T

Sigma Protocol for Diffie-Hellman tuples

x=(g, h, u,v)

A=gr

c

 z=r+cy

y s.t.
u=gy,v=hy

Accept iff gz=Auc

H=hr

and hz=Hvc

Sigma Protocol for Diffie-Hellman tuples

x=(g, h, u,v)

A=gr

c

 z=r+cy

y s.t.
u=gy,v=hy

Accept iff gz=Auc

H=hr

and hz=Hvc

HVZKHVZKsim
c Zq
z Zq
A=gz/uc

a=(A,H)

c

 z
H=hz/vc

Sigma Protocol for Diffie-Hellman tuples

x=(g, h, u,v)

A=gr

c

 z=r+cy

y s.t.
u=gy,v=hy

Accept iff gz=Auc

H=hr

and hz=Hvc

Special-soundness

Exactly the same as the one for the Dlog protocol

Why do we care?
• We know how to construct ZK proofs for any NP-language (with both efficient

prover and verifier)

• CCA-encryption scheme

• Multi-party computation

• Identification schemes

• Privacy-preserving blockchains

Identification scheme

PasswordAlice

Password1
Password2

….

Identification scheme

Password1
Password2

….

PasswordAlice

Identification scheme

x=gy x

x

Identification scheme
y, x1=gy

x1,x2,x3,x4

I know y s.t. either
x1=gy or
x2=gy or
x3=gy or
x4=gy

x2

x3

x4

Summary/Notes

• Sigma-Protocol
• Every language in NP has a sigma-protocol
• Can we circumvent the 3-round impossibility and design an efficient non-interactive

argument?

How do we make non-interactive proofs?

Ow

a<—PΣ(x)

x

c<—O(a,x)
z<—PΣ(x,w,c)

a,z VΣ(a,c,z)=1

c<—O(a,x)

• Fiat-Shamir transform

• in practice O is a hash function (e.g.SHA2)

z
c
aPΣ VΣ

• Adds very little overhead to the starting sigma-protocol
• Used in practice for identification scheme, signatures,

SNARKS, …

Conclusions

• Non-interactive zero-knowledge (NIZK) proofs: length of the proof and
verification time dependent on the NP language

• Known from standard falsifiable assumptions
• Setup is needed (just RO would suffice)

• SNARKs proofs: length of the proof depends on the security parameter
and the verification time is dependent on the instance only

• Setup is needed (even in the RO model)
• Based on non-falsifiable assumptions (Knowledge of Exponent

Assumptions)

End

References from the book of Goldreich Oded: Foundations of Cryptography: Volume 1, Basic
Tools (see the link on learn)

• Sec. 4.2 until (included) Sec. 4.2.2 with no proofs
• Sec. 4.3 until (included) Sec. 4.3.2 with no proofs
• Sec. 4.7 until (included) Definition 4.7.2 with no proofs

More References on Sigma-Protocols: On Sigma-Protocols. Ivan Damgaard. https://
www.cs.au.dk/~ivan/Sigma.pdf

