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@ Learning associations: Classical and Operant Conditioning
@ Predicting action outcomes: Rescorla-Wagner Rule

@ TD learning
°

Q-Learning: TD Learning + choosing actions
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Reinforcement Learning

From Stimulus to Action

Usually there are many stimuli, and many possible actions. How to decide which action
to take?
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Reinforcement Learning

Reinforcement Learning: Aims

@ To keep track of complex, high-dimensional environments (states).
e To bridge time delays between action(s) and outcomes.

@ To assign value to actions/states and remember these to choose appropriate
actions.

(Image is an example from Google Research, 2019)
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Reinforcement Learning

Reinforcement Learning: Approach
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e RL agents have explicit goals, manifested through rewards (or punishments).

@ RL agents act on the environment and collect information to inform the next

action.
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Reinforcement Learning

Learning associations: Classical and Operant Conditioning

Operant Conditioning
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Classical conditioning: unconditioned stimulus (food) - conditioned stimulus (bell)
= pairing a state with an outcome.
Operant conditioning: an action / conditioned response (lever press) - reward (food)

= pairing an action with an outcome.
6/18



Reinforcement Learning

Classical Conditioning: Rescorla-Wagner Rule

The strength of the association between CS and US at time t: V;
Change in association:

Vi= Vi1 + (R — Vi)

R: reward

a: learning rate

0 = R — V4_1: prediction error
Also called the §-rule.
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Reinforcement Learning

The Rescorla-Wagner Rule for Classical Conditioning
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Vi= Vi1 + (R — Vi)

First R was set to —1, and then changed to +1 (o = 0.1).
So the key quantity of the model is the prediction error. Is it computed in the brain?
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Reinforcement Learning

Prediction Errors in the Brain
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Visual discrimination task with reward: Dopamine neurons of the substantia nigra appear to
signal the prediction error as predicted by the Rescorla-Wagner rule.
Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature neuroscience,

1(4), 304-309.
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Reinforcement Learning
Operant Conditioning - actions have consequences
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Law of effect (Edward Thorndike):

CR more frequent (rare) when it elicits a positive (negative) stimulus.
Reinforcers: Stimuli increasing behaviour rate

Punishers: Stimuli decreasing behaviour rate
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Reinforcement Learning
Delayed rewards are difficult in practise
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How to know which past action was responsible for an observed outcome? This is
called the temporal credit assignment problem.
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Reinforcement Learning

Reward Learning in the VTA

Do dopamine neurons report an error
in the prediction of reward?
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First the neurons signal a prediction error. Once learned, the same neurons now signal
reward at the time of the cue.

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology.
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Reinforcement Learning
TD learning

We have states s;, rewards r; and the value of the states V/(s).

Prediction error:
0t = res1 +YV(ser1) — V(st)

Future potential rewards are taken into account, but discounted by ~.

Value update:
V(St) < V(St) + O[(;t

This iteratively learns a stable state / value map (but takes time).
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Reinforcement Learning

Q-Learning: TD Learning + choosing actions
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Discount factor: v = 0.8. For state 2, it is now better to accept negative reward first,
as more reward is on the horizon later.
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Reinforcement Learning

Action Learning in the Brain
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Dopamine neurons in the midbrain: prediction errors ¢
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Reinforcement Learning

Reinforcement Learning Successes
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@ Learns to play complex board and video games (and even learns rules).

@ Fine-tune large language models (ChatGPT).
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Reinforcement Learning

AlphaGo Zero (2017)
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itself on 64 GPU workers and 19 CPU parameter

Best Models are used as new opponents for self-play.
0.4s thinking time/move, 4.9 million games played; 216,000 moves/day. About 3

Comparison to human-trained supervised model (move prediction).
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Reinforcement Learning
Summary

@ Evidence that the brain learns to predict the outcomes of actions and stimuli.

@ Responses corresponding to prediction errors are observed in the dopaminergic
system.

@ RL assumes that prediction errors reflects the learning of goal-directed behaviour,
represented through value.

@ RL finds the behaviours that maximise value.

@ Works well in simple examples, but is hard and data-inefficient for problems with
real world complexity.
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