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Neural Networks



A Single Neuron

• A neuron receives inputs and combines these in the cell body.

• If the input reaches a threshold, then the neuron may fire (produce an output).

• Some inputs are excitatory, while others are inhibitory.
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Biological Neural Networks

• In biological neural networks, neurons are connected by synapses.

• An input connection is a conduit through which a neuron receives information.

• An output connection is a conduit through which a neural sends information.
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Neural Networks

Neural networks (aka deep learning) is a computer modeling

approach inspired by information processing in networks of bi-

ological neurons.
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Anatomy of a Neural Network

Units are to a neural net model

what neurons are to a biological

neural network — basic infor-

mation processing structures.

Biological neural networks are

organized in layers of neurons.

Neural net models are orga-

nized in layers of units, not ran-

dom clusters.

But what you see here still isn’t a network. Something is missing.
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Anatomy of a Neural Network

Network connections are conduits through which information flows between the units

in a network:

• Connections are represented with lines

• Arrows in a neural net indicate the flow of information from one unit to the next.
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The Perceptron



Perceptron: An Artificial Neuron

The perceptron was developed by Frank Rosenblatt in 1957. It’s the simplest kind of

artificial neural network.

∑
f

x1

x2

. . .

xn

y

w1

w2

. . .

wn

Input function:

u(x) =
n∑

i=1
wixi

Activation function: threshold

y = f (u(x)) =

1, if u(x) > θ

0, otherwise

Activation state:

0 or 1 (−1 or 1)
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Perceptron: An Artificial Neuron

The perceptron was developed by Frank Rosenblatt in 1957. It’s the simplest kind of

artificial neural network.

∑
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x1
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. . .

xn
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w1

w2

. . .

wn

• Inputs are in the range [0, 1], where 0 is “off” and 1 is “on”.

• Weights can be any real number (positive or negative).
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Perceptrons for Logic

Perceptron for AND

1

0

1

f if
∑
≥ θ then 1 else 0

0 · 0.5 + 1 · 0.5 = 0.5

0

0.5

0.5

input output y =
x1 x2 x1 AND x2

0 0 0

0 1 0

1 0 0

1 1 1
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Perceptrons for Logic

Perceptron for AND

1
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We can easily devise perceptrons that compute the logical functions AND and OR.

Can we compute all logical functions? What about XOR?
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Perceptrons for Logic

Perceptron for XOR
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XOR is an exclusive OR because it only returns a true value of 1 if the two values are

exclusive, i.e., they are both different. 12
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Perceptrons for Logic

Time for a short quiz on Wooclap!

https://app.wooclap.com/GEKKBD
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Perceptrons as Classifiers



Perceptrons as Classifiers

Perceptrons are linear classifiers, i.e., they can only separate points with a hyperplane

(a straight line in two dimensions).> J*)#05*#8)*8")06"7?#0!%0#+"%&7#%#7$%00")#89*0#46B67639"#3<#%#70)%6'!0#96&"

>
H K&#)"%9#96("?#0!6&'7#%)"#)%)"9<#0!67#&"%0

16



The XOR problem again

The XOR function is not linearly separable, as more than one line is required to

separate the two classes {(0,0), (1,1)} and {(0,1), (1,0)}. A single-layer perceptron

cannot compute XOR.
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Learning in Perceptrons



Learning

Q1: But choosing weights and threshold θ for the perceptron is not easy! How

to learn the weights and threshold from examples?

A1: We can use a learning algorithm that adjusts the weights and threshold

based on examples.

http://www.youtube.com/watch?v=vGwemZhPlsA&feature=youtu.be
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Learning: A trick to learn θ

∑
f

x0 = −1

x1

x2

. . .

xn

y

w0 = θ
w1

w2

. . .

wn

• We can consider θ as a weight to be learned!

• The input is fixed as −1. The activation function is then:

y = f (u(x)) =

1, if u(x) > 0

0, otherwise
19



What is the Perceptron Really Seeing?

Sequence of exemplars presented to the perceptron during training:

N input x target t

output o

1 (0,1,0,0) 1

0

2 (1,0,0,0) 0

0

3 (0,1,1,1) 0

1

4 (1,0,1,0) 0

1

5 (1,1,1,1) 1

0

6 (0,1,0,0) 1

1

• This perceptron has 4 inputs (binary) ≈ feature vector representing exemplars

• The perceptron sees 6 exemplars or training items

• We don’t know the weights/threshold!

• But we know the perceptron’s output o and can compare it to the correct answer,

the target t

20
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The Perceptron Learning Rule



Learning Rule

Key idea: Adjust the weights so that o (the output of the perceptron) moves closer to

t (the target, i.e., the desired correct output):

Perceptron Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

• η, 0 < η ≤ 1 is a constant called learning rate.

• t is the target for the current example.

• o is the perceptron output for the current example.
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Learning Rule

Perceptron Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

o = 1 and t = 1

∆wi = η(t − o)xi = η(1− 1)xi = 0

o = 0 and t = 1

∆wi = η(t − o)xi = η(1− 0)xi = ηxi

• Learning rate η is positive; controls how big changes ∆wi are.

• If xi > 0, ∆wi > 0 then wi increases in an attempt to make wixi become larger

than θ.

• If xi < 0, ∆wi < 0 then wi reduces.
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Perceptrons for Logic

Time for a short quiz on Wooclap!

https://app.wooclap.com/GEKKBD
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Learning Rule: Exercise

Perceptron Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

Consider a perceptron with only one input x1, weight w1 = 0.5, threshold θ = 0 and

learning rate η = 0.6. Consider also the training example {x1 = −1, t = 1}. For now,

let’s temporarily ignore the learning of the threshold and consider it fixed.

• Determine the output of the perceptron for the input −1:

w1x1 = 0.5(−1) = −0.5 ≤ θ → o = 0

• The new weight w1 after applying the learning rule:

∆w1 = 0.6(1− 0)(−1) = −0.6→ w1 = 0.5− 0.6 = −0.1

• The new output of the perceptron for the input −1:

w1x1 = −0.1(−1) = 0.1 ≥ θ → o = 1

24



Learning Rule: Exercise

Perceptron Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

Consider a perceptron with only one input x1, weight w1 = 0.5, threshold θ = 0 and

learning rate η = 0.6. Consider also the training example {x1 = −1, t = 1}. For now,

let’s temporarily ignore the learning of the threshold and consider it fixed.

• Determine the output of the perceptron for the input −1:

w1x1 = 0.5(−1) = −0.5 ≤ θ → o = 0

• The new weight w1 after applying the learning rule:

∆w1 = 0.6(1− 0)(−1) = −0.6→ w1 = 0.5− 0.6 = −0.1

• The new output of the perceptron for the input −1:

w1x1 = −0.1(−1) = 0.1 ≥ θ → o = 1

24



Learning Rule: Exercise

Perceptron Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

Consider a perceptron with only one input x1, weight w1 = 0.5, threshold θ = 0 and

learning rate η = 0.6. Consider also the training example {x1 = −1, t = 1}. For now,

let’s temporarily ignore the learning of the threshold and consider it fixed.

• Determine the output of the perceptron for the input −1:

w1x1 = 0.5(−1) = −0.5 ≤ θ → o = 0

• The new weight w1 after applying the learning rule:

∆w1 = 0.6(1− 0)(−1) = −0.6→ w1 = 0.5− 0.6 = −0.1

• The new output of the perceptron for the input −1:

w1x1 = −0.1(−1) = 0.1 ≥ θ → o = 1

24



Learning Rule: Exercise

Perceptron Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

Consider a perceptron with only one input x1, weight w1 = 0.5, threshold θ = 0 and

learning rate η = 0.6. Consider also the training example {x1 = −1, t = 1}. For now,

let’s temporarily ignore the learning of the threshold and consider it fixed.

• Determine the output of the perceptron for the input −1:

w1x1 = 0.5(−1) = −0.5 ≤ θ → o = 0

• The new weight w1 after applying the learning rule:

∆w1 = 0.6(1− 0)(−1) = −0.6→ w1 = 0.5− 0.6 = −0.1

• The new output of the perceptron for the input −1:

w1x1 = −0.1(−1) = 0.1 ≥ θ → o = 1

24



Learning Rule: Exercise

Perceptron Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

Consider a perceptron with only one input x1, weight w1 = 0.5, threshold θ = 0 and

learning rate η = 0.6. Consider also the training example {x1 = −1, t = 1}. For now,

let’s temporarily ignore the learning of the threshold and consider it fixed.

• Determine the output of the perceptron for the input −1:

w1x1 = 0.5(−1) = −0.5 ≤ θ → o = 0

• The new weight w1 after applying the learning rule:

∆w1 = 0.6(1− 0)(−1) = −0.6→ w1 = 0.5− 0.6 = −0.1

• The new output of the perceptron for the input −1:

w1x1 = −0.1(−1) = 0.1 ≥ θ → o = 1

24



Learning Rule: Exercise

Perceptron Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

Consider a perceptron with only one input x1, weight w1 = 0.5, threshold θ = 0 and

learning rate η = 0.6. Consider also the training example {x1 = −1, t = 1}. For now,

let’s temporarily ignore the learning of the threshold and consider it fixed.

• Determine the output of the perceptron for the input −1:

w1x1 = 0.5(−1) = −0.5 ≤ θ → o = 0

• The new weight w1 after applying the learning rule:

∆w1 = 0.6(1− 0)(−1) = −0.6→ w1 = 0.5− 0.6 = −0.1

• The new output of the perceptron for the input −1:

w1x1 = −0.1(−1) = 0.1 ≥ θ → o = 1 24



Learning Algorithm

1: Initialize all weights randomly.

2: repeat

3: for each training example do

4: Apply the learning rule.

5: end for

6: until the error is acceptable or a certain number

of iterations is reached

This algorithm is guaranteed to find a solution with zero error in a limited number of

iterations as long as the examples are linearly separable.
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Summary

• Neural networks (aka deep learning) is a computer modeling approach inspired by

networks of biological neurons.

• A neural net consists of units and connections.

• The perceptron is the simplest neural network model; it is a linear classifier.

• A learning algorithm for perceptrons exists.

• Key limitation: only works for linearly separable data.
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