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Neural Networks



A Single Neuron

Structure of a Typical Neuron
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e A neuron receives inputs and combines these in the cell body.
e If the input reaches a threshold, then the neuron may fire (produce an output).
e Some inputs are excitatory, while others are inhibitory.



Biological Neural Networks

Axon
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e In biological neural networks, neurons are connected by synapses.
e An input connection is a conduit through which a neuron receives information.

e An output connection is a conduit through which a neural sends information.



Neural Networks

Neural networks (aka deep learning) is a computer modeling
approach inspired by information processing in networks of bi-

ological neurons.
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Anatomy of a Neural Network

Units are to a neural net model

what neurons are to a biological . }unit
neural network — basic infor-

mation processing structures.
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But what you see here still isn’t a network. Something is missing. .



Anatomy of a Neural Network

Network connections are conduits through which information flows between the units

in a network:
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unit layer
2 OO0 @ OO
connections
unit layer
1

e Connections are represented with lines
e Arrows in a neural net indicate the flow of information from one unit to the next.



The Perceptron



Perceptron: An Artificial Neuron

The perceptron was developed by Frank Rosenblatt in 1957. It's the simplest kind of
artificial neural network.
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Perceptron: An Artificial Neuron

The perceptron was developed by Frank Rosenblatt in 1957. It's the simplest kind of
artificial neural network.
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u(x) = 3 wix; y =f(u(x)) = Oorl(—1or1)
i=1 0, otherwise



Perceptron: An Artificial Neuron

The perceptron was developed by Frank Rosenblatt in 1957. It's the simplest kind of
artificial neural network.
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e Inputs are in the range [0, 1], where 0 is “off” and 1 is “on”.

e Weights can be any real number (positive or negative).
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Perceptrons for Logic

Perceptron for AND
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We can easily devise perceptrons that compute the logical functions AND and OR.

Can we compute all logical functions? What about XOR?
11



Perceptrons for Logic
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XOR is an exclusive OR because it only returns a true value of 1 if the two values are
exclusive, i.e., they are both different. 12
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Perceptrons for Logic

https://app.wooclap.com /GEKKBD
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Perceptrons as Classifiers



Perceptrons as Classifiers

Perceptrons are linear classifiers, i.e., they can only separate points with a hyperplane
(a straight line in two dimensions).

Multidimensional, irrelevant variation Multidimensional

Dimension 2

Dimension 2
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The XOR problem again

The XOR function is not linearly separable, as more than one line is required to
separate the two classes {(0,0), (1,1)} and {(0,1), (1,0)}. A single-layer perceptron
cannot compute XOR.

X
24

(0,1) o(1,1)

(0,0) (1,0 X:
17



Learning in Perceptrons



Q1: But choosing weights and threshold 0 for the perceptron is not easy! How
to learn the weights and threshold from examples?

Ai: We can use a learning algorithm that adjusts the weights and threshold

based on examples.

http://www.youtube.com/watch?v=vGwemZhPlsA&feature=youtu.be

18
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Learning: A trick to learn ¢

xo = —1
X1

X2

Xn

e We can consider 0 as a weight to be learned!

e The input is fixed as —1. The activation function is then:

1, ifu(x)>0

0, otherwise

y = fu(x) =



What is the Perceptron Really Seeing?

Sequence of exemplars presented to the perceptron during training:

N input x targett
1

S BN
= = O O O =

e This perceptron has 4 inputs (binary) ~ feature vector representing exemplars
e The perceptron sees 6 exemplars or training items

20
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What is the Perceptron Really Seeing?

Sequence of exemplars presented to the perceptron during training:

N input x target t output o

1 (0,1,0,0) 1 0
2 (1,0,0,0) 0 0
3 (0,1,1,1) 0 1
4 (1,0,1,0) 0 1
5 (1,1,1,1) 1 0
6 (0,1,0,0) 1 1

This perceptron has 4 inputs (binary) & feature vector representing exemplars

The perceptron sees 6 exemplars or training items
We don't know the weights/threshold!

But we know the perceptron’s output o and can compare it to the correct answer,
the target t 20



The Perceptron Learning Rule



Learning Rule

Key idea: Adjust the weights so that o (the output of the perceptron) moves closer to
t (the target, i.e., the desired correct output):

Perceptron Learning Rule
w; < w; + Aw;

Aw; =n(t — 0)x;

e 7, 0 <n <1is a constant called learning rate.
e t is the target for the current example.

e 0 is the perceptron output for the current example.

21



Learning Rule

Perceptron Learning Rule
wi < w; + Aw;

Aw; =n(t— o)x;

o=landt=1
o=0andt=1

e Learning rate 7 is positive; controls how big changes Aw; are.

o If x; >0, Aw; > 0 then w; increases in an attempt to make w;x; become larger
than 6.
o If x; <0, Aw; < 0 then w; reduces.
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Perceptrons for Logic

https://app.wooclap.com /GEKKBD
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Learning Rule: Exercise

Perceptron Learning Rule
w; < wj + Aw;
Aw; =n(t—0)x;

Consider a perceptron with only one input x1, weight wy = 0.5, threshold ¢ = 0 and
learning rate n = 0.6. Consider also the training example {x; = —1,¢t = 1}. For now,
let's temporarily ignore the learning of the threshold and consider it fixed.

24
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Learning Algorithm

1: Initialize all weights randomly.

repeat
for each training example do
Apply the learning rule.
end for

@ & » ® N

until the error is acceptable or a certain number

of iterations is reached

This algorithm is guaranteed to find a solution with zero error in a limited number of
iterations as long as the examples are linearly separable.

23



Neural networks (aka deep learning) is a computer modeling approach inspired by

networks of biological neurons.

A neural net consists of units and connections.

The perceptron is the simplest neural network model; it is a linear classifier.

A learning algorithm for perceptrons exists.

Key limitation: only works for linearly separable data.
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