Informatics 1 Cognitive Science

Lecture 8: Word Segmentation

Frank Keller

31 January 2025

School of Informatics University of Edinburgh keller@inf.ed.ac.uk

Slide credits: Frank Mollica, Chris Lucas, Mirella Lapata

Speech Segmentation and Language Development

Transitional Probability

Word Segmentation Experiments

Minimum Description Length

- So far, we have seen rule-based models and neural network models. These at the extremes of the rationalist-empiricist debate.
- We've also seen how these two modeling frameworks can be applied to capture aspects of language development, such as past tense learning.
- Over the next few lectures, we will introduce a third modeling framework, probabilistic modeling.
- This approach offers a way of combining rules will numerical information (probabilities).
- The rules are pre-existing (maybe innate), while the probabilities are learned. So we combine aspects of rationalism and empiricism.
- Again, we will model aspects of language development: word segmentation (this lecture) and word learning (next week).

Speech Segmentation and Language Development

The Development of Language

The Development of Language

How Do We Learn Words?

- Knowing a language implies having a mental lexicon.
- Memorized set of associations among sound sequences, their meanings, and their syntax.
- Speech stream lacks any acoustic analog of the blank spaces between printed words.
- Basic units of linguistic input are not words but entire utterances.
- Child's task: to discover the words themselves in addition to meaning and syntax.

hamuchosañosquebuscoelyermo hamuchosañosquevivotriste hamuchosañosqueestoyenfermo yesporellibroquetúescribiste okempisantesdeleerteamaba laluzlasvegaselmarocéano mastúdijistequetodoacaba quetodomuerequetodoesvano A Kempis by Amado Nervo

hamuchosañosquebuscoelyermo hamuchosañosquevivotriste hamuchosañosqueestoyenfermo yesporellibroquetúescribiste okempisantesdeleerteamaba laluzlasvegaselmarocéano mastúdijistequetodoacaba quetodomuerequetodoesvano

https://www.poemas-del-alma.com/a-kempis.htm

A Kempis by Amado Nervo

hamuchosañosquebuscoelyermo hamuchosañosquevivotriste hamuchosañosqueestoyenfermo yesporellibroquetúescribiste okempisantesdeleerteamaba laluzlasvegaselmarocéano mastúdijistequetodoacaba quetodomuerequetodoesvano

https://www.poemas-del-alma.com/a-kempis.htm

ASL demo: https://youtube.com/playlist?list=PLx1wHz1f-8J_xKVdU7DGa5RWIwWzRWNVt

THEREDONATEAKETTLEOFTENCHIPS

THEREDONATEAKETTLEOFTENCHIPS THE RED ON A TEA KETTLE OFTEN CHIPS

THEREDONATEAKETTLEOFTENCHIPS THE RED ON A TEA KETTLE OFTEN CHIPS THERE, DON ATE A KETTLE OF TEN CHIPS

THEREDONATEAKETTLEOFTENCHIPS THE RED ON A TEA KETTLE OFTEN CHIPS THERE, DON ATE A KETTLE OF TEN CHIPS THERE, DONATE A KETTLE OF TEN CHIPS Things we need to understand before we can even start to study language acquisition:

- How does an infant divide the input into reusable units?
- How does she represent those units?
- What does she know about them and when?

This is not an end in itself: speech segmentation provides useful units (Peters, 1983) for learning a grammar: lexicon, morphology, syntax, phonology.

Infants make use of multiple cues in the input, most popularly:

- **Stress patterns:** English usually stresses first syllable, French always the last; final syllables of words are longer (*hamster* vs. *ham stir*).
- Phonotactic constraints: every word must contain a vowel, finite set of consonant clusters at the beginning of a word, etc. (*gdog* not a possible English word).
- Bootstrapping from known words.
- Statistical regularities: there is a consistent sequence of elements within words.

Infants make use of multiple cues in the input, most popularly:

- **Stress patterns:** English usually stresses first syllable, French always the last; final syllables of words are longer (*hamster* vs. *ham stir*).
- Phonotactic constraints: every word must contain a vowel, finite set of consonant clusters at the beginning of a word, etc. (*gdog* not a possible English word).
- Bootstrapping from known words.
- Statistical regularities: there is a consistent sequence of elements within words.

Time for a short quiz on Wooclap!

https://app.wooclap.com/FQGMXM

Words create regularities in the sound sequences of a language.

- There is a consistent sequence of elements within words.
- Sequences that don't occur within words can only occur at word boundaries.
- Sequences that don't occur within a word will tend to occur infrequently.
- Thus, we can find word boundaries by looking for unlikely transitions.

$$P(y|x) = \frac{p(x,y)}{p(x)} \approx \frac{freq(x,y)}{freq(x)}$$

Suppose the phoneme $[\eth]$ occurs 200,000 times in a text:

- 190,000 times are before a vowel (as in *the*, *this*);
- 200 times are before [m].

$$p(vowel|\delta) = \frac{190,000}{200,000} = .95$$

$$P(m|\delta) = \frac{200}{200,000} = .001$$

Word Segmentation Experiments

Saffran et al. (1996) asked whether 8-month-old infants can extract information about word boundaries solely on the basis of statistics.

Their experiment proceeded as follows:

- 1. Create a "language" from nonsense words.
- 2. Infants listen to synthesized language (pabiku, tibudo).
- 3. Then, test: can infants distinguish words (pabiku) from part-words (dogola)?

pa bi ku ti bu do go la tu ti bu do da ro pi pa bi ku go la tu ti bu do pa bi ku go la tu da ro pi pa bi ku da ro pi pa bi ku ti bu do go la tu ti bu do

pa bi ku ti bu do go la tu ti bu do da ro pi pa bi ku go la tu ti bu do pa bi ku go la tu da ro pi pa bi ku da ro pi pa bi ku ti bu do go la tu ti bu do

Headturn Preference Procedure

- Infants are exposed for 2 minutes to nonsense language (pabiku, tibudo, golatu)
- Only statistical cues to word boundaries.
- Then record how long they attend to novel sets of stimuli that either do or do not share some property with the familiarization data.
- Discrimination between *words* and *part-words* (sequences spanning word boundaries)
- If there's a difference, there has been some learning during familiarization.

Results

- Infants show longer listening times for part-words
- Infants can extract information about sequential statistics of syllables (input contained no pauses or intonational patterns)

Saffran's work (and much subsequent research) shows:

- Humans can use statistical information to segment speech.
- But all words were trisyllabic.
- So, transitional probabilities were either 1 or .33
- Will this work with more realistic probabilities?

Patricia Kuhl: The genius of babies

https://www.ted.com/talks/patricia_kuhl_the_linguistic_genius_of_babies

Time for a short quiz on Wooclap!

https://app.wooclap.com/FQGMXM

Minimum Description Length

Lexicons and Segmentation

- The use of transitional probabilities to do word segmentation is not sufficient.
- It ignores the fact that many words are being learned at the same time.
- There are statistical methods for speech segmentation that incorporate the learning of a lexicon as a sub-component.
- Brent and Cartwright (1996): find the lexicon which minimizes the description of the observed data:

Minimum Description Length

size(description) = size(lexicon) + size(data-encoding)

Minimum Description Length

size(description) = size(lexicon) + size(data-encoding

- The MDL principle minimizes the length of words: shorter words are more plausible
- It minimizes the number of different words: try to make use of words you already know
- It maximizes the probability of each word: words recur as often as possible

Input

doyouseethekitty

seethekitty

doyoulikethekitty

Input

doyouseethekitty

seethekitty

doyoulikethekitty

Segmentation 1 do you see thekitty see thekitty do you like thekitty

Input

doyouseethekitty

seethekitty

doyoulikethekitty

Segmentation 1 do you see thekitty see thekitty do you like thekitty

Lexicon 1 1 do 2 thekitty 3 you 4 like 5 see

Input

doyouseethekitty

seethekitty

doyoulikethekitty

Segmentation 1 do you see thekitty see thekitty do you like thekitty

Lexicon 1 1 do 2 thekitty 3 you 4 like 5 see

Derivation 1

1352 52

1342

Input

doyouseethekitty seethekitty doyoulikethekitty

Segmentation 1 do you see thekitty see thekitty do you like thekitty

Lexicon 1 1 do 2 thekitty 3 you 4 like 5 see

Derivation 1

1352 52 1342

Minimum Description Length

 $\label{eq:size} \begin{array}{l} {\sf size}({\sf description}) = {\sf size}({\sf lexicon}) + \\ {\sf size}({\sf data}{\sf -}{\sf encoding}) \end{array}$

size(lexicon) = number of character characters = letters and digits

size(data-encoding) = number of characters in derivation

Input

doyouseethekitty seethekitty doyoulikethekitty

Segmentation 1 do you see thekitty see thekitty do you like thekitty

Lexicon 1 1 do 2 thekitty 3 you 4 like 5 see

Derivation 1 1 3 5 2 5 2 1 3 4 2

Minimum Description Length

size(description) = size(lexicon) + size(data-encoding)

size(lexicon) = number of character characters = letters and digits

size(data-encoding) = number of characters in derivation Length: 25 + 10 = 35

(Note we don't count spaces, only letters and digits.)

Input

doyouseethekitty seethekitty doyoulikethekitty

Segmentation 2 do you see the kitty see the kitty do you like the kitty

Lexicon 2 1 do 2 the 3 you 4 like 5 see 6 kitty

Derivation 2 1 3 5 2 6 5 2 6 1 3 4 2 6

Minimum Description Length

size(description) = size(lexicon) +
size(data-encoding)

size(lexicon) = number of characters characters = letters and digits

size(data-encoding) = number of characters in derivation

Input

doyouseethekitty seethekitty doyoulikethekitty

Segmentation 2 do you see the kitty see the kitty do you like the kitty Lexicon 2

1 do 2 the 3 you 4 like 5 see 6 kitty

Derivation 2 1 3 5 2 6 5 2 6 1 3 4 2 6

Minimum Description Length

size(description) = size(lexicon) + size(data-encoding)

size(lexicon) = number of characters characters = letters and digits

size(data-encoding) = number of characters in derivation Length: 26 + 13 = 39

(Note we don't count spaces, only letters and digits.)

- MDL model is tested on (phonetically) transcribed speech from the CHILDES corpus.
- An idealization of the raw acoustic signal.
- Model searches for segmentation of the input with least MDL.
- Search algorithm is not incremental; it reads in the entire input before segmenting any part of it.
- Approach does not rely on language-specific input!
- Computational simulations systematically explore hypothesis that distributional regularity is useful for word segmentation.

In order to acquire a lexicon young children segment speech into words using multiple sources of support.

In this lecture, we focused on distributional regularities:

- transitional probability provides cues
- verified by Saffran et al. (1996) experiments
- computational model of word segmentation
- based on Minimum Description Length Principle

Next lecture: Bayesian modeling.