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A universe of coloured shapes 2.1/26



Some statements about the universe 3.1/26

Every red triangle is small

3

Every small triangle is red

7

Some big triangle is green

?

Some small disc is red

?

No red thing is blue

?
Categorical propositions say:
(Every/some/no) A is (not) B.

Aristotle
384–322 B.C.



Some statements about the universe 3.2/26

Every red triangle is small 3

Every small triangle is red

7

Some big triangle is green

?

Some small disc is red

?

No red thing is blue

?
Categorical propositions say:
(Every/some/no) A is (not) B.

Aristotle
384–322 B.C.



Some statements about the universe 3.3/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green

?

Some small disc is red

?

No red thing is blue

?
Categorical propositions say:
(Every/some/no) A is (not) B.

Aristotle
384–322 B.C.



Some statements about the universe 3.4/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

Categorical propositions say:
(Every/some/no) A is (not) B.

Aristotle
384–322 B.C.



Some statements about the universe 3.5/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

Categorical propositions say:
(Every/some/no) A is (not) B.

Aristotle
384–322 B.C.



Checking categorical propositions 4.1/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

red

triangle small

green
disc

blue



Checking categorical propositions 4.2/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

red

triangle small

green
disc

blue



Checking categorical propositions 4.3/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

red

triangle small

green
disc

blue



Checking categorical propositions 4.4/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

red

triangle small

green
disc

blue



Checking categorical propositions 4.5/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

red

triangle small

green

disc
blue



Checking categorical propositions 4.6/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green 3

Some small disc is red ?
No red thing is blue ?

red

triangle small

green

disc
blue



Checking categorical propositions 4.7/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green 3

Some small disc is red ?
No red thing is blue ?

red

triangle

small

green

disc

blue



Checking categorical propositions 4.8/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green 3

Some small disc is red 7

No red thing is blue ?

red

triangle

small

green

disc

blue



Checking categorical propositions 4.9/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green 3

Some small disc is red 7

No red thing is blue ?

red

triangle small

green
disc

blue



Checking categorical propositions 4.10/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green 3

Some small disc is red 7

No red thing is blue 3

red

triangle small

green
disc

blue



Categorical propositions as predicate logic 5.1/26

Categorical propositions are a very restricted form of predicate logic:

I Every red thing is small
∀x .isRed(x)→ isSmall(x)

I Every small triangle is red
∀x .(isSmall(x) ∧ isTriangle(x))→ isRed(x)

I Some small disc is red
∃x .(isSmall(x) ∧ isDisc(x)) ∧ isRed(x)

Can you write the general form of a categorical proposition?



Categorical propositions as predicate logic 5.2/26

Categorical propositions are a very restricted form of predicate logic:

I Every red thing is small
∀x .isRed(x)→ isSmall(x)

I Every small triangle is red
∀x .(isSmall(x) ∧ isTriangle(x))→ isRed(x)

I Some small disc is red
∃x .(isSmall(x) ∧ isDisc(x)) ∧ isRed(x)

Can you write the general form of a categorical proposition?



A universe in Haskell (1) 6.1/26

R

S

T

W

U
V

YX

Z

We need names for the things in the universe:
data Thing = R | S | T | U | V | W | X | Y | Z deriving (Eq,Show)
things = [ R, S, T, U, V, W, X, Y, Z ]

It’s tempting to define types for the features that things have:
data Colour = Red | Blue | Green
data Shape = Disc | Triangle
data Size = Big | Small

and then define functions for the features:
colour :: Thing -> Colour
shape :: Thing -> Shape
size :: Thing -> Size
colour R = Green

etc. etc.
However, because of all the types, this ends up being hard to work
with.



A universe in Haskell (1) 6.2/26

R

S

T

W

U
V

YX

Z

We need names for the things in the universe:
data Thing = R | S | T | U | V | W | X | Y | Z deriving (Eq,Show)
things = [ R, S, T, U, V, W, X, Y, Z ]

It’s tempting to define types for the features that things have:
data Colour = Red | Blue | Green
data Shape = Disc | Triangle
data Size = Big | Small

and then define functions for the features:
colour :: Thing -> Colour
shape :: Thing -> Shape
size :: Thing -> Size
colour R = Green

etc. etc.

However, because of all the types, this ends up being hard to work
with.



A universe in Haskell (1) 6.3/26

R

S

T

W

U
V

YX

Z

We need names for the things in the universe:
data Thing = R | S | T | U | V | W | X | Y | Z deriving (Eq,Show)
things = [ R, S, T, U, V, W, X, Y, Z ]

It’s tempting to define types for the features that things have:
data Colour = Red | Blue | Green
data Shape = Disc | Triangle
data Size = Big | Small

and then define functions for the features:
colour :: Thing -> Colour
shape :: Thing -> Shape
size :: Thing -> Size
colour R = Green

etc. etc.
However, because of all the types, this ends up being hard to work
with.



A universe in Haskell (2) 7.1/26

R

S

T

W

U
V

YX

Z

data Thing = R | S | T | U | V | W | X | Y | Z deriving (Eq,Show)
things = [ R, S, T, U, V, W, X, Y, Z ]

Instead of features, we define predicates, the basic propositions of
logic. Every feature has a predicate, e.g. isGreen.

We could define the type of predicates on things:

type ThingPredicate = Thing -> Bool
isGreen :: ThingPredicate

but it’s more general and convenient to do:

type Predicate u = u -> Bool
isGreen :: Predicate Thing



A universe in Haskell (2) 7.2/26

R

S

T

W

U
V

YX

Z

data Thing = R | S | T | U | V | W | X | Y | Z deriving (Eq,Show)
things = [ R, S, T, U, V, W, X, Y, Z ]

Instead of features, we define predicates, the basic propositions of
logic. Every feature has a predicate, e.g. isGreen.
We could define the type of predicates on things:

type ThingPredicate = Thing -> Bool
isGreen :: ThingPredicate

but it’s more general and convenient to do:

type Predicate u = u -> Bool
isGreen :: Predicate Thing



A universe in Haskell (2) 7.3/26

R

S

T

W

U
V

YX

Z

data Thing = R | S | T | U | V | W | X | Y | Z deriving (Eq,Show)
things = [ R, S, T, U, V, W, X, Y, Z ]

Instead of features, we define predicates, the basic propositions of
logic. Every feature has a predicate, e.g. isGreen.
We could define the type of predicates on things:

type ThingPredicate = Thing -> Bool
isGreen :: ThingPredicate

but it’s more general and convenient to do:

type Predicate u = u -> Bool
isGreen :: Predicate Thing



Defining the predicates 8.1/26

R

S

T

W

U
V

YX

Z

This is the simplest way to establish the predicates:

isGreen R = True
isGreen S = True
isGreen T = False

A lazier1 way is:

isGreen x = x `elem` [ R, S, W, Y ]
isRed x = x `elem` [ U, V ]

Is this too lazy? (What happens when we extend the universe?)

isBlue x = not (isGreen x || isRed x)

1The three chief virtues of a programmer are laziness, impatience, and hubris
– Larry Wall



Defining the predicates 8.2/26

R

S

T

W

U
V

YX

Z

This is the simplest way to establish the predicates:

isGreen R = True
isGreen S = True
isGreen T = False

A lazier1 way is:

isGreen x = x `elem` [ R, S, W, Y ]
isRed x = x `elem` [ U, V ]

Is this too lazy? (What happens when we extend the universe?)

isBlue x = not (isGreen x || isRed x)

1The three chief virtues of a programmer are laziness, impatience, and hubris
– Larry Wall



Defining the predicates 8.3/26

R

S

T

W

U
V

YX

Z

This is the simplest way to establish the predicates:

isGreen R = True
isGreen S = True
isGreen T = False

A lazier1 way is:

isGreen x = x `elem` [ R, S, W, Y ]
isRed x = x `elem` [ U, V ]

Is this too lazy? (What happens when we extend the universe?)

isBlue x = not (isGreen x || isRed x)

1The three chief virtues of a programmer are laziness, impatience, and hubris
– Larry Wall



Representing statements with list comprehension 9.1/26

R
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T
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V

YX

Z

X

Z

Haskell’s list comprehension gives a powerful way of representing
statements:

[ x | x <- things, isBlue x || (isBig x && isDisc x) ]

‘the set (list) of things that are either blue or are big discs’



Representing statements with list comprehension 9.2/26

R

S
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V

YX

Z

Haskell’s list comprehension gives a powerful way of representing
statements:

[ x | x <- things, isBlue x || (isBig x && isDisc x) ]

‘the set (list) of things that are either blue or are big discs’



Categorical statements with Haskell 10.1/26

R
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T

W
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Combining list comprehension with boolean operators on lists lets us
express categorical statements.
Every small triangle is red. 7

[ x | x <- things, isTriangle(x) && isSmall(x) ]
[S,V,X]

‘The set of things that are small triangles.’

[ isRed(x) | x <- things, isTriangle(x) && isSmall(x) ]
[False,True,False]

‘Whether each small triangle is red.’

and [ isRed(x) | x <- things, isTriangle(x) && isSmall(x) ]
False

‘Every small triangle is red.’



Categorical statements with Haskell 10.2/26

R
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Combining list comprehension with boolean operators on lists lets us
express categorical statements.
Every small triangle is red. 7

[ x | x <- things, isTriangle(x) && isSmall(x) ]
[S,V,X]

‘The set of things that are small triangles.’

[ isRed(x) | x <- things, isTriangle(x) && isSmall(x) ]
[False,True,False]

‘Whether each small triangle is red.’

and [ isRed(x) | x <- things, isTriangle(x) && isSmall(x) ]
False

‘Every small triangle is red.’



Categorical statements with Haskell 10.3/26

R

S

T

W

U
V

YX

Z

7

7

3

Combining list comprehension with boolean operators on lists lets us
express categorical statements.
Every small triangle is red. 7

[ x | x <- things, isTriangle(x) && isSmall(x) ]
[S,V,X]

‘The set of things that are small triangles.’

[ isRed(x) | x <- things, isTriangle(x) && isSmall(x) ]
[False,True,False]

‘Whether each small triangle is red.’

and [ isRed(x) | x <- things, isTriangle(x) && isSmall(x) ]
False

‘Every small triangle is red.’



Categorical statements with Haskell 10.4/26

R

S

T

W

U
V

YX

Z

7

7

3

Combining list comprehension with boolean operators on lists lets us
express categorical statements.
Every small triangle is red. 7

[ x | x <- things, isTriangle(x) && isSmall(x) ]
[S,V,X]

‘The set of things that are small triangles.’

[ isRed(x) | x <- things, isTriangle(x) && isSmall(x) ]
[False,True,False]

‘Whether each small triangle is red.’

and [ isRed(x) | x <- things, isTriangle(x) && isSmall(x) ]
False

‘Every small triangle is red.’



Aristotle’s Syllogistic Reasoning 11.1/26

A syllogism is discourse (logos) in which, certain things be-
ing stated, something other than what is stated follows of
necessity from those things.

I All Greeks are human
I All humans are mortal
I ∴ All Greeks are mortal



Syllogisms 12.1/26

All Greeks are
human
All humans are
mortal
∴ all humans are
mortal

Can be expressed in many forms:

I { x | isGreek(x) } ⊆ { x | isHuman(x) }
I { x | isHuman(x) } ⊆ { x | isMortal(x) }
I ∴ { x | isGreek(x) } ⊆ { x | isMortal(x) }

In modern logic, we write it as:

isGreek � isHuman isHuman � isMortal
isGreek � isMortal

The general form of this syllogism is

a � b b � c
a � c

Is this syllogism sound? I.e. valid in every universe?



Syllogisms 12.2/26

All Greeks are
human
All humans are
mortal
∴ all humans are
mortal

Can be expressed in many forms:

I { x | isGreek(x) } ⊆ { x | isHuman(x) }
I { x | isHuman(x) } ⊆ { x | isMortal(x) }
I ∴ { x | isGreek(x) } ⊆ { x | isMortal(x) }

In modern logic, we write it as:

isGreek � isHuman isHuman � isMortal
isGreek � isMortal

The general form of this syllogism is

a � b b � c
a � c

Is this syllogism sound? I.e. valid in every universe?



Syllogisms 12.3/26

All Greeks are
human
All humans are
mortal
∴ all humans are
mortal

Can be expressed in many forms:

I { x | isGreek(x) } ⊆ { x | isHuman(x) }
I { x | isHuman(x) } ⊆ { x | isMortal(x) }
I ∴ { x | isGreek(x) } ⊆ { x | isMortal(x) }

In modern logic, we write it as:

isGreek � isHuman isHuman � isMortal
isGreek � isMortal

The general form of this syllogism is

a � b b � c
a � c

Is this syllogism sound? I.e. valid in every universe?



Syllogisms 12.4/26

All Greeks are
human
All humans are
mortal
∴ all humans are
mortal

Can be expressed in many forms:

I { x | isGreek(x) } ⊆ { x | isHuman(x) }
I { x | isHuman(x) } ⊆ { x | isMortal(x) }
I ∴ { x | isGreek(x) } ⊆ { x | isMortal(x) }

In modern logic, we write it as:

isGreek � isHuman isHuman � isMortal
isGreek � isMortal

The general form of this syllogism is

a � b b � c
a � c

Is this syllogism sound? I.e. valid in every universe?



Checking logic by Venn diagrams 13.1/26

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

red

triangle small

green
disc

blue



Venn diagrams 14.1/26

A rotationally symmetric Venn diagram for n > 1 sets exists iff n is prime

Venn diagrams show every possible combination

A

B

C

100

010

001

110 011

101

111

000

x

000 Ā ∩ B̄ ∩ C̄
001 Ā ∩ B̄ ∩ C
010 Ā ∩ B ∩ C̄
011 Ā ∩ B ∩ C
100 A ∩ B̄ ∩ C̄
101 A ∩ B̄ ∩ C
110 A ∩ B ∩ C̄
111 A ∩ B ∩ C



Venn diagrams 14.2/26

A rotationally symmetric Venn diagram for n > 1 sets exists iff n is prime

We use light shading to show emptiness of a region

A

B

C

100

010

001

110 011

101

111

000

x

Ā ∩ B ∩ C = ∅



Venn diagrams 14.3/26

A rotationally symmetric Venn diagram for n > 1 sets exists iff n is prime

We may write a variable to show non-emptiness of a region

A

B

C

100

010

001

110 011

101

111

000

x
x ∈ A ∩ B ∩ C̄



Venn interpretation of a � b 15.1/26

a b

¬a ∧ ¬b

¬a ∧ ba ∧ ¬b a ∧ b

a � b ‘every a is b’
a � b ‘no a is not b’
a � b ‘nothing is a and not b’
a � b a ∩ b̄ = ∅
a � b ¬(a ∧ ¬b)
a � b b ∨ ¬a



Venn interpretation of a � b 15.2/26

a b

¬a ∧ ¬b

¬a ∧ ba ∧ ¬b a ∧ b

a � b ‘every a is b’
a � b ‘no a is not b’
a � b ‘nothing is a and not b’
a � b a ∩ b̄ = ∅
a � b ¬(a ∧ ¬b)
a � b b ∨ ¬a



Venn syllogism 16.1/26

a � b b � c
a � c

a b b c

every a is b every b is c

every a is c

a c



Combining diagrams 17.1/26

a � b b � c
a � ca

b

b

c

a

b

c

a c



Combining diagrams 17.2/26

a � b b � c
a � ca

b

b

c

a

b

c

a c



Combining diagrams 17.3/26

a � b b � c
a � ca

b

b

c

a

b

c

a c



Combining diagrams 17.4/26

a � b b � c
a � ca

b

b

c

a

b

c

a c



Combining diagrams 17.5/26

a � b b � c
a � ca

b

b

c

a

b

c

a c



Barbara is sound! 18.1/26

Mediaeval logicians
gave mnemonic
names to syllogisms.
This one is barbara.
Consult Wikipedia to
find out what that
means – but only if
you don’t value your
sanity!

barbara a � b b � c

a � c

This rule, as we’ve seen, is sound:
for any predicates a, b, c in any universe, we have:
if the premises (above the line) are valid
then the conclusion (below the line) is valid.



Aristotle’s universal propositions 19.1/26

Aristotle differed from us
moderns on the relation
between ‘all’ and ‘no’. For
him, this syllogism
contained a universal
affirmative and two
universal negatives. The
mediaeval logicians called it
celarent.
The key difference was the
‘existential assumption’ –
see later.

make statements about all of something: ‘all a are b’.
We can make universal negative statements: ‘no a is b’.

‘no a is b’ iff ‘every a is ¬b’ iff a � ¬b

Here is a syllogism involving universal negatives:

s � r r � ¬f
s � ¬f

All snakes are reptiles
No reptile has fur
∴ No snake has fur

Is this an instance of barbara (and so valid)?
For us modern logicians, it is: a ≡ s, b ≡ r , c ≡ ¬f .
A negated predicate is also a predicate.



Aristotle’s universal propositions 19.2/26

Aristotle differed from us
moderns on the relation
between ‘all’ and ‘no’. For
him, this syllogism
contained a universal
affirmative and two
universal negatives. The
mediaeval logicians called it
celarent.
The key difference was the
‘existential assumption’ –
see later.

make statements about all of something: ‘all a are b’.
We can make universal negative statements: ‘no a is b’.

‘no a is b’ iff ‘every a is ¬b’ iff a � ¬b

Here is a syllogism involving universal negatives:

s � r r � ¬f
s � ¬f

All snakes are reptiles
No reptile has fur
∴ No snake has fur

Is this an instance of barbara (and so valid)?

For us modern logicians, it is: a ≡ s, b ≡ r , c ≡ ¬f .
A negated predicate is also a predicate.



Aristotle’s universal propositions 19.3/26

Aristotle differed from us
moderns on the relation
between ‘all’ and ‘no’. For
him, this syllogism
contained a universal
affirmative and two
universal negatives. The
mediaeval logicians called it
celarent.
The key difference was the
‘existential assumption’ –
see later.

make statements about all of something: ‘all a are b’.
We can make universal negative statements: ‘no a is b’.

‘no a is b’ iff ‘every a is ¬b’ iff a � ¬b

Here is a syllogism involving universal negatives:

s � r r � ¬f
s � ¬f

All snakes are reptiles
No reptile has fur
∴ No snake has fur

Is this an instance of barbara (and so valid)?
For us modern logicians, it is: a ≡ s, b ≡ r , c ≡ ¬f .
A negated predicate is also a predicate.



Universal statements 20.1/26

whether affirmative or negative, say that some region is empty:
all a are b no a is b

a � b a � ¬b

a b a b

We can observe:

I a � b and ¬a � ¬b are
reflections of each other: so
¬a � ¬b is the same as b � a.
¬a � ¬b is the contrapositive of
b � a.

I a � ¬b is symmetrical, so is the
same as b � ¬a – they are
contrapositives. Likewise ¬a � b
and ¬b � a.



Universal statements 20.2/26

whether affirmative or negative, say that some region is empty:
all a are b no a is b

a � b a � ¬b

a b a b

What about ¬a � b and ¬a � ¬b?

We can observe:

I a � b and ¬a � ¬b are
reflections of each other: so
¬a � ¬b is the same as b � a.
¬a � ¬b is the contrapositive of
b � a.

I a � ¬b is symmetrical, so is the
same as b � ¬a – they are
contrapositives. Likewise ¬a � b
and ¬b � a.



Universal statements 20.3/26

whether affirmative or negative, say that some region is empty:
all a are b no a is b

a � b a � ¬b

a b a b

??? ???
¬a � b ¬a � ¬b

a b a b

We can observe:

I a � b and ¬a � ¬b are
reflections of each other: so
¬a � ¬b is the same as b � a.
¬a � ¬b is the contrapositive of
b � a.

I a � ¬b is symmetrical, so is the
same as b � ¬a – they are
contrapositives. Likewise ¬a � b
and ¬b � a.



Universal statements 20.4/26

whether affirmative or negative, say that some region is empty:
all a are b no a is b

a � b a � ¬b

a b a b

??? ???
¬a � b ¬a � ¬b

a b a b

We can observe:
I a � b and ¬a � ¬b are

reflections of each other: so
¬a � ¬b is the same as b � a.
¬a � ¬b is the contrapositive of
b � a.

I a � ¬b is symmetrical, so is the
same as b � ¬a – they are
contrapositives. Likewise ¬a � b
and ¬b � a.



Universal statements 20.5/26

whether affirmative or negative, say that some region is empty:
all a are b no a is b

a � b a � ¬b

a b a b

??? ???
¬a � b ¬a � ¬b

a b a b

We can observe:
I a � b and ¬a � ¬b are

reflections of each other: so
¬a � ¬b is the same as b � a.
¬a � ¬b is the contrapositive of
b � a.

I a � ¬b is symmetrical, so is the
same as b � ¬a – they are
contrapositives. Likewise ¬a � b
and ¬b � a.



Negation and contraposition 21.1/26

Natural languages
differ, within and
between themselves,
on how they treat
multiple negatives:
‘I didn’t never do
nothing to nobody!’.
How does your
native language/
dialect treat multiple
negatives?

Negation can be tricky – modern classical logic makes it simple.

The law of double negation: ¬¬a = a (two negatives make a
positive).

The law of contraposition: a � b iff ¬b � ¬a.

Thus we get a � b iff ¬b � ¬a iff ¬¬a � ¬¬b iff a � b.

a � b

¬b � ¬a
The double line means the rule works both ways.



Negation and contraposition 21.2/26

Natural languages
differ, within and
between themselves,
on how they treat
multiple negatives:
‘I didn’t never do
nothing to nobody!’.
How does your
native language/
dialect treat multiple
negatives?

Negation can be tricky – modern classical logic makes it simple.

The law of double negation: ¬¬a = a (two negatives make a
positive).

The law of contraposition: a � b iff ¬b � ¬a.

Thus we get a � b iff ¬b � ¬a iff ¬¬a � ¬¬b iff a � b.

a � b

¬b � ¬a
The double line means the rule works both ways.



Negation and contraposition 21.3/26

Natural languages
differ, within and
between themselves,
on how they treat
multiple negatives:
‘I didn’t never do
nothing to nobody!’.
How does your
native language/
dialect treat multiple
negatives?

Negation can be tricky – modern classical logic makes it simple.

The law of double negation: ¬¬a = a (two negatives make a
positive).

The law of contraposition: a � b iff ¬b � ¬a.

Thus we get a � b iff ¬b � ¬a iff ¬¬a � ¬¬b iff a � b.

a � b

¬b � ¬a
The double line means the rule works both ways.



Negation and contraposition 21.4/26

Natural languages
differ, within and
between themselves,
on how they treat
multiple negatives:
‘I didn’t never do
nothing to nobody!’.
How does your
native language/
dialect treat multiple
negatives?

Negation can be tricky – modern classical logic makes it simple.

The law of double negation: ¬¬a = a (two negatives make a
positive).

The law of contraposition: a � b iff ¬b � ¬a.

Thus we get a � b iff ¬b � ¬a iff ¬¬a � ¬¬b iff a � b.

a � b

¬b � ¬a
The double line means the rule works both ways.



Reprise 22.1/26

So far, we have seen (and hopefully agreed on) these sound rules
about predicates and �:

I ¬¬a = a or
a

¬¬a (double negation)

I a � b b � c

a � c
(barbara)

I
a � b

¬b � ¬a
(contraposition)

We also saw a ‘different’ (for Aristotle) syllogism with negatives got
from barbara by putting ¬c for c :

a � b b � ¬c
a � ¬c

All snakes are reptiles
No reptile has fur
∴ No snake has fur



Reprise 22.2/26

So far, we have seen (and hopefully agreed on) these sound rules
about predicates and �:

I ¬¬a = a or
a

¬¬a (double negation)

I a � b b � c

a � c
(barbara)

I
a � b

¬b � ¬a
(contraposition)

We also saw a ‘different’ (for Aristotle) syllogism with negatives got
from barbara by putting ¬c for c :

a � b b � ¬c
a � ¬c

All snakes are reptiles
No reptile has fur
∴ No snake has fur



More syllogisms 23.1/26

barbara and celarent

By using (un)negated predicates in barbara, we get 8 syllogisms:

a � b b � c

a � c

¬a � b b � c

¬a � c

a � b b � ¬c
a � ¬c

¬a � b b � ¬c
¬a � ¬c

a � ¬b ¬b � c

a � c

¬a � ¬b ¬b � c

¬a � c

a � ¬b ¬b � ¬c
a � ¬c

¬a � ¬b ¬b � ¬c
¬a � ¬c

Aristotle only considered negative predicates on the right of �
(a � ¬b means ‘no a is b’, so he viewed it as a negative statement
about positive predicates). This leaves . . .



More syllogisms 23.2/26

barbara and celarent

By using (un)negated predicates in barbara, we get 8 syllogisms:

a � b b � c

a � c

¬a � b b � c

¬a � c

a � b b � ¬c
a � ¬c

¬a � b b � ¬c
¬a � ¬c

a � ¬b ¬b � c

a � c

¬a � ¬b ¬b � c

¬a � c

a � ¬b ¬b � ¬c
a � ¬c

¬a � ¬b ¬b � ¬c
¬a � ¬c

Aristotle only considered negative predicates on the right of �
(a � ¬b means ‘no a is b’, so he viewed it as a negative statement
about positive predicates). This leaves . . .



More syllogisms 23.3/26

barbara and celarent

By using (un)negated predicates in barbara, we get 8 syllogisms:

a � b b � c

a � c

¬a � b b � c

¬a � c

a � b b � ¬c
a � ¬c

¬a � b b � ¬c
¬a � ¬c

a � ¬b ¬b � c

a � c

¬a � ¬b ¬b � c

¬a � c

a � ¬b ¬b � ¬c
a � ¬c

¬a � ¬b ¬b � ¬c
¬a � ¬c

Aristotle only considered negative predicates on the right of �
(a � ¬b means ‘no a is b’, so he viewed it as a negative statement
about positive predicates). This leaves . . .



Even more syllogisms 24.1/26

cesare,camenes,
camestres

Contraposition lets us generate three more (Aristotelian) syllogisms
from celarent:

a � b c � ¬b
a � ¬c

a � b b � ¬c
c � ¬a

a � b c � ¬b
c � ¬a

That brings us to 5 sound universal syllogisms. That’s all!



Unsound syllogisms 25.1/26

a

b

b

c

a

b

c

a ca c

a � b b � ¬c
a � c

All snakes are reptiles
No reptile has fur
∴ All snakes have fur

To disprove a syllogism, we
need just one universe where
it’s invalid (e.g. Edinburgh
zoo).
Is there a universe where this
syllogism is valid?
(Aristotle said ‘no’; we
moderns differ. Hint: St
Patrick.)



Unsound syllogisms 25.2/26

a

b

b

c

a

b

c

a c

a c

a � b b � ¬c
a � c

All snakes are reptiles
No reptile has fur
∴ All snakes have fur

To disprove a syllogism, we
need just one universe where
it’s invalid (e.g. Edinburgh
zoo).
Is there a universe where this
syllogism is valid?
(Aristotle said ‘no’; we
moderns differ. Hint: St
Patrick.)



Unsound syllogisms 25.3/26

a

b

b

c

a

b

c

a c

a c

a � b b � ¬c
a � c

All snakes are reptiles
No reptile has fur
∴ All snakes have fur

To disprove a syllogism, we
need just one universe where
it’s invalid (e.g. Edinburgh
zoo).
Is there a universe where this
syllogism is valid?
(Aristotle said ‘no’; we
moderns differ. Hint: St
Patrick.)



Unsound syllogisms 25.4/26

a

b

b

c

a

b

c

a c

a c

x

×a � b× ×b � ¬c×
a � c

All snakes are reptiles
No reptile has fur
∴ All snakes have fur

To disprove a syllogism, we
need just one universe where
it’s invalid (e.g. Edinburgh
zoo).
Is there a universe where this
syllogism is valid?
(Aristotle said ‘no’; we
moderns differ. Hint: St
Patrick.)



Unsound syllogisms 25.5/26

a

b

b

c

a

b

c

a c

a c

x

×a � b× ×b � ¬c×
a � c

All snakes are reptiles
No reptile has fur
∴ All snakes have fur
To disprove a syllogism, we
need just one universe where
it’s invalid (e.g. Edinburgh
zoo).

Is there a universe where this
syllogism is valid?
(Aristotle said ‘no’; we
moderns differ. Hint: St
Patrick.)



Unsound syllogisms 25.6/26

a

b

b

c

a

b

c

a c

a c

x

×a � b× ×b � ¬c×
a � c

All snakes are reptiles
No reptile has fur
∴ All snakes have fur
To disprove a syllogism, we
need just one universe where
it’s invalid (e.g. Edinburgh
zoo).
Is there a universe where this
syllogism is valid?
(Aristotle said ‘no’; we
moderns differ. Hint: St
Patrick.)



Reprise: Sound universal syllogisms 26.1/26

From barbara, contraposition, and double negation, we have five
sound syllogisms about universal statements:

a � b b � c

a � c

a � b b � ¬c
a � ¬c

a � b c � ¬b
a � ¬c

a � b b � ¬c
c � ¬a

equivalently c � b b � ¬a
a � ¬c

a � b c � ¬b
c � ¬a

equivalently c � b a � ¬b
a � ¬c

Note that the conclusion is negative iff exactly one of the
premises is negative – compare the unsound syllogism on the
previous slide.



Reprise: Sound universal syllogisms 26.2/26

From barbara, contraposition, and double negation, we have five
sound syllogisms about universal statements:

a � b b � c

a � c

a � b b � ¬c
a � ¬c

a � b c � ¬b
a � ¬c

a � b b � ¬c
c � ¬a

equivalently c � b b � ¬a
a � ¬c

a � b c � ¬b
c � ¬a

equivalently c � b a � ¬b
a � ¬c

Note that the conclusion is negative iff exactly one of the
premises is negative – compare the unsound syllogism on the
previous slide.


