Informatics 1 — Introduction to Computation
Computation and Logic
Julian Bradfield

based on materials by
Michael P. Fourman

From Aristotle to Venn:
Aristotelian Syllogisms
and

Venn Diagrams

John Venn
1834-1923

A universe of coloured shapes 21/26

‘A >a
® A
>0

Some statements about the universe

‘A Pa
® A
>0

Every red triangle is small
Every small triangle is red
Some big triangle is green
Some small disc is red

No red thing is blue

3.1/26

Some statements about the universe

‘A Pa
® A
>0

Every red triangle is small
Every small triangle is red
Some big triangle is green
Some small disc is red

No red thing is blue

3.2/26

v

Some statements about the universe 3.3/26
> Every red triangle is small v
A Every small triangle is red X
Some big triangle is green

. Some small disc is red

No red thing is blue

3.4/26

Some statements about the universe
> Every red triangle is small v

A Every small triangle is red X

Some big triangle is green 7

?

?

Some small disc is red
‘ No red thing is blue

Some statements about the universe 35/26

Every red triangle is small

v
Every small triangle is red X
Some big triangle is green 7
Some small disc is red ?
No red thing is blue ?
Categorical propositions say:
(Every/some/no) A is (not) B.

Avristotle @6 ‘ /
384-322 B.C. b 4

Checking categorical propositions

4.1/26

Every red triangle is small v

Checking categorical propositions

4.2/26

Every red triangle is small v

Checking categorical propositions

4.3/26

Every small triangle is red X

Checking categorical propositions

4.4/26

Every small triangle is red X

Checking categorical propositions 45/26

Some big triangle is green 7

Checking categorical propositions 4.6/26

Some big triangle is green v
?

Checking categorical propositions 47/26

Some small disc is red ?

Checking categorical propositions 4.8/26

Some small disc is red X

Checking categorical propositions 49/26

I I No red thing is blue ?
blue

Checking categorical propositions

4.10/26

No red thing is blue v

Categorical propositions as predicate logic

Categorical propositions are a very restricted form of predicate logic:

» Every red thing is small
Vx.isRed(x) — isSmall(x)

» Every small triangle is red

Vx.(isSmall(x) A isTriangle(x)) — isRed(x)
» Some small disc is red

dx.(isSmall(x) A isDisc(x)) A isRed(x)

5.1/26

Categorical propositions as predicate logic 5.2/26

Categorical propositions are a very restricted form of predicate logic:

» Every red thing is small
Vx.isRed(x) — isSmall(x)

» Every small triangle is red

Vx.(isSmall(x) A isTriangle(x)) — isRed(x)
» Some small disc is red

dx.(isSmall(x) A isDisc(x)) A isRed(x)

Can you write the general form of a categorical proposition?

A universe in Haskell (1)

6.1/26

We need names for the things in the universe:

data Thing =R | S | T | U | V[W | X[Y| Z deriving (
things = [R, S, T, U, V, W, X, Y, Z]

-
A
A

A universe in Haskell (1) 6:2/26

We need names for the things in the universe:
data Thing =R | S | T | U [V| W | X | Y | Z deriving (Eg.Sh
things = [R, S, T, U, V, W, X, Y, Z]

It's tempting to define types for the features that things have:

data Colour = Red | Blue | Green
data Shape = Disc | Triangle

data Size = Big | Small

and then define functions for the features: A
colour :: Thing -> Colour
shape :: Thing -> Shape

size :: Thing -> Size
colour R = Green

etc. etc.

A universe in Haskell (1) 6.3/26

We need names for the things in the universe:
data Thing =R | S | T | U [V| W | X | Y | Z deriving (Eg.Sh
things = [R, S, T, U, V, W, X, Y, Z]

It's tempting to define types for the features that things have:

data Colour = Red | Blue | Green
data Shape = Disc | Triangle

data Size = Big | Small

and then define functions for the features: A
colour :: Thing -> Colour
shape :: Thing -> Shape

size :: Thing -> Size
colour R = Green
etc. etc.

However, because of all the types, this ends up being hard to work
with.

A universe in Haskell (2)

7.1/26

data Thing =R | S | T | U | V| W /| X | Y | Z deriving (Eq,ShQw)
things = [R, S, T, U, V, W, X, Y, Z1]

Instead of features, we define predicates, the basic propositions of
logic. Every feature has a predicate, e.g. isGreen.

@
A

A

A universe in Haskell (2) 72/26

data Thing =R | S | T | U | V| W /| X | Y | Z deriving (Eq,ShQw)

things = [R, S, T, U, V, W, X, Y, Z1]

Instead of features, we define predicates, the basic propositions of
logic. Every feature has a predicate, e.g. isGreen.

We could define the type of predicates on things:

A

type ThingPredicate = Thing -> Bool
isGreen :: ThingPredicate

A

A universe in Haskell (2) 7:3/26

data Thing =R | S | T | U | V| W /| X | Y | Z deriving (Eq,ShQw)

things = [R, S, T, U, V, W, X, Y, Z]

Instead of features, we define predicates, the basic propositions of
logic. Every feature has a predicate, e.g. isGreen.

We could define the type of predicates on things:

A

type ThingPredicate = Thing -> Bool
isGreen :: ThingPredicate

but it's more general and convenient to do:

A

type Predicate u = u -> Bool
isGreen :: Predicate Thing

Defining the predicates 5.1/26

This is the simplest way to establish the predicates:

isGreen R = True
isGreen S True
isGreen T = False

Defining the predicates 8.2/26

This is the simplest way to establish the predicates:

isGreen R = True
isGreen S True
isGreen T = False

A lazier! way is:

isGreen x = x “elem™ [R, S, W, Y]
isRed x = x “elem™ [U, V]

1 The three chief virtues of a programmer are laziness, impatience, and hubris
— Larry Wall

Defining the predicates 8.3/26

This is the simplest way to establish the predicates:

isGreen R = True

True
isGreen T = False

isGreen S

A lazier! way is:

isGreen x = x “elem™ [R, S, W, Y]
isRed x = x “elem™ [U, V]

Is this too lazy? (What happens when we extend the universe?) A

isBlue x = not (isGreen x || isRed x)

L The three chief virtues of a programmer are laziness, impatience, and hubris
— Larry Wall

Representing statements with list comprehension 0.1/26

Haskell's list comprehension gives a powerful way of representing
statements:

[x | x <- things, isBlue x || (isBig x && isDisc x)] ‘

A

A

Representing statements with list comprehension 0.2/26

Haskell's list comprehension gives a powerful way of representing
statements:

[x | x <- things, isBlue x || (isBig x && isDisc x)]

‘the set (list) of things that are either blue or are big discs’

Categorical statements with Haskell 10.1/26

Combining list comprehension with boolean operators on lists lets us
express categorical statements.

Every small triangle is red. X ‘

A

Categorical statements with Haskell

10.2/26

Combining list comprehension with boolean operators on lists lets us
express categorical statements.

Every small triangle is red. X ‘
[x | x <- things, isTriangle(x) && isSmall(x)]
[s,v,Xx]

‘The set of things that are small triangles.’ A

oL
4@
O

Categorical statements with Haskell

10.3/26

Combining list comprehension with boolean operators on lists lets us

express categorical statements.

Every small triangle is red. X ‘
[x | x <- things, isTriangle(x) && isSmall(x)]

[s,v,Xx]

‘The set of things that are small triangles.’ X A

[isRed(x) | x <- things, isTriangle(x) && isSmall(x)]
[False,True,Falsel

v

-
B

‘Whether each small triangle is red.’
R l

Categorical statements with Haskell

10.4/26

Combining list comprehension with boolean operators on lists lets us
express categorical statements.

Every small triangle is red. X ‘
[x | x <- things, isTriangle(x) && isSmall(x)]
[s,v,Xx]

‘The set of things that are small triangles.’ X

v

A

[isRed(x) | x <- things, isTriangle(x) && isSmall(x)]
[False,True,Falsel

‘Whether each small triangle is red.’

and [isRed(x) | x <- things, isTriangle(x) && isSmall(x)] X
False

‘Every small triangle is red.’

Aristotle’'s Syllogistic Reasoning 111/26

A syllogism is discourse (logos) in which, certain things be-
ing stated, something other than what is stated follows of
necessity from those things.

» All Greeks are human
» All humans are mortal

» - All Greeks are mortal

Syllogisms

Can be expressed in many forms:
> {x|isGreek(x)} C { x| isHuman(x) }
» {x |isHuman(x)} C { x | isMortal(x) }
» . {x|isGreek(x)} C {x | isMortal(x) }

12.1/26

All Greeks are
human

All humans are
mortal

. all humans are
mortal

Syllogisms

Can be expressed in many forms:
> {x|isGreek(x)} C { x| isHuman(x) }
» {x |isHuman(x)} C { x | isMortal(x) }
» . {x|isGreek(x)} C {x | isMortal(x) }

In modern logic, we write it as:

isGreek E isHuman isHuman E isMortal

isGreek E isMortal

All Greeks are
human

All humans are
mortal

.. all humans are
mortal

12.2/26

Syllogisms

Can be expressed in many forms:
> {x|isGreek(x)} C { x| isHuman(x) }
» {x |isHuman(x)} C { x | isMortal(x) }
» . {x|isGreek(x)} C {x | isMortal(x) }

In modern logic, we write it as:

isGreek E isHuman isHuman E isMortal

isGreek E isMortal

The general form of this syllogism is

aFb bEc
akFc

All Greeks are
human

All humans are
mortal

.. all humans are
mortal

12.3/26

Syllogisms
Can be expressed in many forms:
> {x|isGreek(x)} C { x| isHuman(x) }
» {x |isHuman(x)} C { x | isMortal(x) }
» . {x|isGreek(x)} C {x | isMortal(x) }

In modern logic, we write it as:

isGreek E isHuman isHuman E isMortal

isGreek E isMortal

The general form of this syllogism is

aFb bEc
akFc

Is this syllogism sound? l.e. valid in every universe?

All Greeks are
human

All humans are
mortal

.. all humans are
mortal

12.4/26

Checking logic by Venn diagrams

13.1/26

Every red triangle is small v

Venn diagrams

Venn diagrams show every possible combination

000
001
010
011
100
101
110
111

A rotationally symmetric Venn diagram for n > 1 sets exists iff n is prime

AnNBNnC
ANBNC
ANnBNC
ANBNC
ANBNC
ANBNC
ANBNC
ANBNC

14.1/26

Venn diagrams 14.2/26

We use light shading to show emptiness of a region

ANBNC=9

A rotationally symmetric Venn diagram for n > 1 sets exists iff n is prime

Venn diagrams 14.3/26

We may write a variable to show non-emptiness of a region

xe AnNBNC

A rotationally symmetric Venn diagram for n > 1 sets exists iff n is prime

Venn interpretation of aF b

—a A —p

aFb
aF b
aFb
aF b
aFb
aF b

‘every ais b’
‘no ais not b’

‘nothing is a and not b’

anb=o
—(a A —b)
bV —a

15.1/26

Venn interpretation of aF b

—a /N —p

aFb
aF b
aFb
aF b
aFb
aF b

‘every ais b’
‘no ais not b’

‘nothing is a and not b’

anb=o
—(a A —b)
bV —a

15.2/26

Venn syllogism

16.1/26

C
every a < b

every bis ¢
every a -

b bEec
aE ¢

DHa

Combining diagrams 17.1/26

aFb bFc
akFc

o 9 = = z 9ac

Combining diagrams 17.2/26

aEb bEc
akFc

o F = = £ DA

Combining diagrams 17.3/26

aEb bEc
akFc

o F = = £ DA

Combining diagrams 17.4/26

aEb bEc
akFc

o 9 = = z 9ac

Combining diagrams 17.5/26

aEb bEc
akFc

o F = = £ DA

Barbara is sound!

aEb bEc
aFc

barbara

This rule, as we've seen, is sound:

for any predicates a, b, ¢ in any universe, we have:

if the premises (above the line) are valid
then the conclusion (below the line) is valid.

18.1/26

Mediaeval logicians
gave mnemonic
names to syllogisms.
This one is barbara.
Consult Wikipedia to
find out what that
means — but only if
you don't value your
sanity!

Aristotle’s universal propositions 19.1/26

make statements about all of something: ‘all a are b'.
We can make universal negative statements: ‘no ais b'.

‘no ais b' iff ‘every ais —b' iff aF —b

Aristotle’s universal propositions 102/26

make statements about all of something: ‘all a are b'.
We can make universal negative statements: ‘no ais b'.

‘no ais b' iff ‘every ais —b' iff aF —b

Here is a syllogism involving universal negatives:

rE f All snakes are reptiles
No reptile has fur
.. No snake has fur

sEr
skEf

Is this an instance of barbara (and so valid)?

Aristotle’s universal propositions 19.3/26

make statements about all of something: ‘all a are b'.
We can make universal negative statements: ‘no ais b'.

‘no ais b' iff ‘every ais —b' iff aF —b

Here is a syllogism involving universal negatives:

rE f All snakes are reptiles
No reptile has fur
.. No snake has fur

sEr
skEf

Is this an instance of barbara (and so valid)?

For us modern logicians, itis: a=s,b=r,c = —f.

A negated predicate is also a predicate.

Aristotle differed from us
moderns on the relation
between ‘all’ and ‘no’. For
him, this syllogism
contained a universal
affirmative and two
universal negatives. The
mediaeval logicians called it
celarent.

The key difference was the
‘existential assumption’ —
see later.

Universal statements 20.1/26

whether affirmative or negative, say that some region is empty:
all aare b no ais b
akEb akF-b

a b a b

Universal statements 20.2/26

whether affirmative or negative, say that some region is empty:
all aare b no ais b
akEb akF-b

What about —aE b and —a E —b?

Universal statements 20.3/26

whether affirmative or negative, say that some region is empty:

all g are b noaisb
akEb akFE-b
a b a b
77 77
-aEb —aFE b

Universal statements 20.4/26

whether affirmative or negative, say that some region is empty:

all g are b noaisb
akEb akFE-b
We can observe:
» akE band —makE —b are
reflections of each other: so
! —ak —b is the same as b F a.
2 —a E —b is the contrapositive of
77 77 bF a.
-aEb —aFE b

Universal statements 20.5/26

whether affirmative or negative, say that some region is empty:

all g are b noaisb
akEb akFE-b
We can observe:
» akE band —makE —b are
reflections of each other: so
s —ak —b is the same as b F a.
a —a E —b is the contrapositive of
77 77 bF a.
—akE b —akE —b » aF —b is symmetrical, so is the

same as b E —a — they are
contrapositives. Likewise —akE b
and b F a.

Negation and contraposition 211/26

Negation can be tricky — modern classical logic makes it simple.

Natural languages
differ, within and
between themselves,
on how they treat
multiple negatives:

‘I didn't never do
nothing to nobody!".
How does your
native language/
dialect treat multiple
negatives?

Negation and contraposition 212/26

Negation can be tricky — modern classical logic makes it simple.

The law of double negation: =—a = a (two negatives make a

positive). Natural languages
differ, within and
between themselves,
on how they treat
multiple negatives:
‘I didn’t never do
nothing to nobody!".
How does your
native language/
dialect treat multiple
negatives?

Negation and contraposition 213/26

Negation can be tricky — modern classical logic makes it simple.

The law of double negation: =—a = a (two negatives make a

positive). Natural languages
differ, within and
between themselves,
on how they treat
multiple negatives:

The law of contraposition: a E b iff =b E —a.

‘I didn’t never do
nothing to nobody!".
How does your
native language/
dialect treat multiple
negatives?

Negation and contraposition 21.4/26

Negation can be tricky — modern classical logic makes it simple.

The law of double negation: =—a = a (two negatives make a

positive). Natural languages
differ, within and
between themselves,
on how they treat
multiple negatives:

The law of contraposition: a E b iff =b E —a.

Thus we get aE b iff =b E —a iff m—aE ——biff aF b.

‘I didn’t never do
nothing to nobody!".

akEb How does your
native language/
—bF —a dialect treat multiple
negatives?

The double line means the rule works both ways.

Reprise 22.1/26

So far, we have seen (and hopefully agreed on) these sound rules
about predicates and F:

a .
» ——a = a or —= (double negation)

——a
» 25D bEC (hpara)
akFc
aEb "
» ———— (contraposition)

—bFE —a

Reprise

So far, we have seen (and hopefully agreed on) these sound rules
about predicates and F:

a .
» ——a = a or —= (double negation)

——a

> aEb bkc
aFc

aEb "
» ———— (contraposition)
—bFE —a

(barbara)

We also saw a ‘different’ (for Aristotle) syllogism with negatives got
from barbara by putting —c for c:

All snakes are reptiles
Eb bE- P
aro proe No reptile has fur

ak-c .". No snake has fur

22.2/26

More syllogisms 23.1/26

By using (un)negated predicates in barbara, we get 8 syllogisms:

akEb bEc —aFEb bEc
aFc -aFc

aEb bE-c —aEb bE-c
akF —c —ak —c

aE-b —-bkEc —aFE-b -bEc
akFc -aFc

aF—-b —-bE-c -aFE-b —-bEF-c
akF -c —akF —c

More syllogisms 23.2/26

By using (un)negated predicates in barbara, we get 8 syllogisms:

aFEb bEc —aEb bEC
aFc -aFc
aEb bE-c —aEb bE-c
akF—c —akF -c
aE-b —-bkEc —aFE-b -bEc
akFc -aFc
aE-b —-bE-c —-aFE-b -bE-c
akF -c —akF —c

Aristotle only considered negative predicates on the right of F
(a F —b means ‘no ais b, so he viewed it as a negative statement
about positive predicates). This leaves ...

More syllogisms 23.3/26

By using (un)negated predicates in barbara, we get 8 syllogisms:
aFb bFc
aFc

aEb bE-c
akF —c

barbara and celarent

Aristotle only considered negative predicates on the right of F
(a F —b means ‘no ais b, so he viewed it as a negative statement
about positive predicates). This leaves . ..

Even more syllogisms 24.1/26

Contraposition lets us generate three more (Aristotelian) syllogisms
from celarent:

aEb ckE-b aEb bE-c aEb ckE-b cesare,camenes,
ak —c ck —a ck—a camestres

That brings us to 5 sound universal syllogisms. That's alll

Unsound syllogisms

akEb

25.1/26
bE —c
akc

All snakes are reptiles
No reptile has fur

. All snakes have fur

DA

Unsound syllogisms

akEb

25.2/26
bE —c
akc

All snakes are reptiles
No reptile has fur

. All snakes have fur

DA

Unsound syllogisms

akEb

25.3/26
bE —c
akc

All snakes are reptiles
No reptile has fur

. All snakes have fur

DA

Unsound syllogisms

akEb

X

25.4/26
bE —c
akc

ZaS

All snakes are reptiles
No reptile has fur

. All snakes have fur

DA

Unsound syllogisms

25.5/26

Eb bE-c
)\a':)\c X

o
Ao

b All snakes are reptiles
No reptile has fur
.. All snakes have fur

To disprove a syllogism, we
need just one universe where
it's invalid (e.g. Edinburgh
200).

Unsound syllogisms 25.6/26

b aEb bE-c

X ZaS
akFc

b All snakes are reptiles
No reptile has fur
.. All snakes have fur
To disprove a syllogism, we
need just one universe where
it's invalid (e.g. Edinburgh
a ¢ 200).

Is there a universe where this
syllogism is valid?

(Aristotle said ‘no’; we
moderns differ. Hint: St

a c Patrick.)

Reprise: Sound universal syllogisms 26.1/26

From barbara, contraposition, and double negation, we have five
sound syllogisms about universal statements:

aEb bFc
akFc
aEb bE-—c
aF —c
aEb ckE-b
aF —c
aFEb bE-c . cEb bE-a
—————— equivalenty —————=
cF —a akF —c
aEb ckE-b cEb akFE-b

equivalently
ckF -a akF -c

Reprise: Sound universal syllogisms 26.2/26

From barbara, contraposition, and double negation, we have five
sound syllogisms about universal statements:

akb bFc Note that the conclusion is negative iff exactly one of the
aFc premises is negative — compare the unsound syllogism on the
2Eb bE —c previous slide.
 aF-c
aFb cF-b
aF —c
aEb bE-c : cEb bE-a
—————— equivalenty ——————
ck-a akF-c

equivalently
ckF -a akF -c

