Informatics 1 －Introduction to Computation
Computation and Logic Julian Bradfield based on materials by Michael P．Fourman

From Aristotle to Venn：
Aristotelian Syllogisms
and
Venn Diagrams

John Venn 1834－1923

Every red triangle is small Every small triangle is red Some big triangle is green
Some small disc is red No red thing is blue

Every red triangle is small Every small triangle is red Some big triangle is green
Some small disc is red No red thing is blue

Every red triangle is small Every small triangle is red Some big triangle is green Some small disc is red No red thing is blue

Every red triangle is smallEvery small triangle is redSome big triangle is green？
Some small disc is red ？
No red thing is blue ？

Every red triangle is smallEvery small triangle is redSome big triangle is green?
Some small disc is red ?
No red thing is blue ?
Categorical propositions say: (Every/some/no) A is (not) B.

Aristotle
384-322 B.C.

Checking categorical propositions

Every red triangle is small

 Every small triangle is red Some big triangle is green Some small disc is red No red thing is blue\checkmark

Checking categorical propositions

Every red triangle is small

 Every small triangle is red Some big triangle is green Some small disc is red No red thing is blue\checkmark

Checking categorical propositions

Every red triangle is small
Every small triangle is red Some big triangle is green Some small disc is red
No red thing is blue

Checking categorical propositions

Every red triangle is small
Every small triangle is red Some big triangle is green Some small disc is red
No red thing is blue

Checking categorical propositions

Every red triangle is small Every small triangle is red

Some big triangle is green？

Some small disc is red

Checking categorical propositions

Every red triangle is small Every small triangle is red

Some big triangle is green Some small disc is red
No red thing is blue

Every red triangle is small Every small triangle is red Some big triangle is green

Some small disc is red

Every red triangle is small Every small triangle is red Some big triangle is green

Some small disc is red

Checking categorical propositions

> Every red triangle is small Every small triangle is red Some big triangle is green Some small disc is red

No red thing is blue

Checking categorical propositions

> Every red triangle is small Every small triangle is red Some big triangle is green Some small disc is red

No red thing is blue

Categorical propositions are a very restricted form of predicate logic:

- Every red thing is small $\forall x$.isRed $(x) \rightarrow$ isSmall (x)
- Every small triangle is red $\forall x .($ isSmall $(x) \wedge$ isTriangle $(x)) \rightarrow$ isRed (x)
- Some small disc is red $\exists x .(\operatorname{isSmall}(x) \wedge \operatorname{isDisc}(x)) \wedge \operatorname{isRed}(x)$

Categorical propositions are a very restricted form of predicate logic:

- Every red thing is small $\forall x$.isRed $(x) \rightarrow$ isSmall (x)
- Every small triangle is red $\forall x .($ isSmall $(x) \wedge$ isTriangle $(x)) \rightarrow$ isRed (x)
- Some small disc is red $\exists x .(\operatorname{isSmall}(x) \wedge \operatorname{isDisc}(x)) \wedge \operatorname{isRed}(x)$
Can you write the general form of a categorical proposition?

A universe in Haskell (1)

We need names for the things in the universe:

```
data Thing = R | S | T | U | V | W | X | Y | Z deriving (Eg,Shd
things = [ R, S, T, U, V, W, X, Y, Z ]
```


We need names for the things in the universe:

```
data Thing = R | S | T | U | V | W | X | Y | Z deriving (Eq,Shd
things = [ R, S, T, U, V, W, X, Y, Z ]
```

It's tempting to define types for the features that things have:
data Colour = Red | Blue | Green
data Shape = Disc | Triangle
data Size = Big | Small
and then define functions for the features:

```
colour :: Thing -> Colour
shape :: Thing -> Shape
size :: Thing -> Size
colour R = Green
```

etc. etc.

We need names for the things in the universe:
data Thing $=R|S| T|U| V|W| X|Y| Z$ deriving (Eg, Sho things $=[R, S, T, U, V, W, X, Y, Z]$
It's tempting to define types for the features that things have:
data Colour $=$ Red | Blue | Green
data Shape = Disc | Triangle
data Size = Big | Small
and then define functions for the features:
colour : : Thing -> Colour
shape :: Thing -> Shape
size : : Thing -> Size
colour $\mathrm{R}=$ Green
etc. etc.
However, because of all the types, this ends up being hard to work with.

A universe in Haskell (2)

data Thing $=$ R | S | T | U | V | W | X | Y | Z deriving (Eq, Show)
things $=[R, S, T, U, V, W, X, Y, Z]$
Instead of features, we define predicates, the basic propositions of logic. Every feature has a predicate, e.g. isGreen.

data Thing $=\mathrm{R}|\mathrm{S}| \mathrm{T}|\mathrm{U}| \mathrm{V}|\mathrm{W}| \mathrm{X}|\mathrm{Y}| \mathrm{Z}$ deriving (Eq,Show)
things $=[\mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}]$
Instead of features, we define predicates, the basic propositions of logic. Every feature has a predicate, e.g. isGreen.
We could define the type of predicates on things:
type ThingPredicate = Thing -> Bool isGreen : : ThingPredicate

data Thing $=\mathrm{R}|\mathrm{S}| \mathrm{T}|\mathrm{U}| \mathrm{V}|\mathrm{W}| \mathrm{X}|\mathrm{Y}| \mathrm{Z}$ deriving (Eq,Show) things $=[R, S, T, U, V, W, X, Y, Z]$
Instead of features, we define predicates, the basic propositions of logic. Every feature has a predicate, e.g. isGreen.
We could define the type of predicates on things:
type ThingPredicate = Thing -> Bool isGreen : : ThingPredicate
but it's more general and convenient to do:
type Predicate u = u -> Bool
isGreen :: Predicate Thing

This is the simplest way to establish the predicates:

```
isGreen R = True
isGreen S = True
isGreen T = False
```


This is the simplest way to establish the predicates:

```
isGreen R = True
isGreen S = True
isGreen T = False
A lazier }\mp@subsup{}{}{1}\mathrm{ way is:
isGreen x = x `elem` [ R, S, W, Y ]
isRed x = x `elem` [ U, V ]
```

${ }^{1}$ The three chief virtues of a programmer are laziness, impatience, and hubris - Larry Wall

This is the simplest way to establish the predicates:

```
isGreen R = True
isGreen S = True
isGreen T = False
```

A lazier ${ }^{1}$ way is:
isGreen $\mathrm{x}=\mathrm{x}$ `elem` [R, S, W, Y] isRed $\mathrm{x}=\mathrm{x}$ `elem` [U, V]

Is this too lazy? (What happens when we extend the universe?) isBlue $\mathrm{x}=$ not (isGreen $\mathrm{x}|\mid$ isRed x)
${ }^{1}$ The three chief virtues of a programmer are laziness, impatience, and hubris - Larry Wall

Haskell's list comprehension gives a powerful way of representing statements:
[$\mathrm{x} \mid \mathrm{x}<-$ things, isBlue $\mathrm{x} \|(\mathrm{isBig} \mathrm{x} \& \&$ isDisc x$)$]

Haskell's list comprehension gives a powerful way of representing statements:
[$\mathrm{x} \mid \mathrm{x}<-$ things, isBlue $\mathrm{x} \|(i s B i g \mathrm{x} \& \&$ isDisc x)] 'the set (list) of things that are either blue or are big discs'

Combining list comprehension with boolean operators on lists lets us express categorical statements.
Every small triangle is red. x

Combining list comprehension with boolean operators on lists lets us express categorical statements.
Every small triangle is red. X
[$\mathrm{x} \mid \mathrm{x}<-$ things, isTriangle(x) \&\& isSmall(x)]
[S, V, X]
'The set of things that are small triangles.'

Categorical statements with Haskell

Combining list comprehension with boolean operators on lists lets us express categorical statements.
Every small triangle is red. x
[$\mathrm{x} \mid \mathrm{x}<-$ things, isTriangle(x) \&\& isSmall(x)]
[S, V, X]
'The set of things that are small triangles.'
[isRed(x) | x <- things, isTriangle(x) \&\& isSmall(x)] [False, True,False]
'Whether each small triangle is red.'

Categorical statements with Haskell

Combining list comprehension with boolean operators on lists lets us express categorical statements.
Every small triangle is red. x
[$\mathrm{x} \mid \mathrm{x}<-$ things, isTriangle(x) \&\& isSmall(x)]
[S, V, X]
'The set of things that are small triangles.'
[isRed(x) | x <- things, isTriangle(x) \&\& isSmall(x)] [False, True,False]
'Whether each small triangle is red.'
and [isRed(x) | x <- things, isTriangle(x) \&\& isSmall(x)] False
'Every small triangle is red.'

A syllogism is discourse (logos) in which, certain things being stated, something other than what is stated follows of necessity from those things.

- All Greeks are human
- All humans are mortal
- \therefore All Greeks are mortal

Can be expressed in many forms:

- $\{x \mid$ isGreek $(x)\} \subseteq\{x \mid$ isHuman $(x)\}$
- $\{x \mid$ isHuman $(x)\} \subseteq\{x \mid$ isMortal $(x)\}$
- $\therefore\{x \mid$ isGreek $(x)\} \subseteq\{x \mid$ isMortal $(x)\}$

All Greeks are human All humans are mortal
\therefore all humans are mortal

Can be expressed in many forms:

- $\{x \mid$ isGreek $(x)\} \subseteq\{x \mid$ isHuman $(x)\}$
- $\{x \mid$ isHuman $(x)\} \subseteq\{x \mid$ isMortal $(x)\}$
- $\therefore\{x \mid$ isGreek $(x)\} \subseteq\{x \mid$ isMortal $(x)\}$

In modern logic, we write it as:

$$
\frac{\text { isGreek } \vDash \text { isHuman } \quad \text { isHuman } \vDash \text { isMortal }}{\text { isGreek } \vDash \text { isMortal }}
$$

All Greeks are human All humans are mortal
\therefore all humans are mortal

Can be expressed in many forms:

- $\{x \mid$ isGreek $(x)\} \subseteq\{x \mid$ isHuman $(x)\}$
- $\{x \mid$ isHuman $(x)\} \subseteq\{x \mid$ isMortal $(x)\}$
- $\therefore\{x \mid$ isGreek $(x)\} \subseteq\{x \mid$ isMortal $(x)\}$

In modern logic, we write it as:

$$
\frac{\text { isGreek } \vDash \text { isHuman } \quad \text { isHuman } \vDash \text { isMortal }}{\text { isGreek } \vDash \text { isMortal }}
$$

All Greeks are

 human All humans are mortal\therefore all humans are mortal

The general form of this syllogism is

$$
\frac{a \vDash b \quad b \vDash c}{a \vDash c}
$$

Can be expressed in many forms:

- $\{x \mid$ isGreek $(x)\} \subseteq\{x \mid$ isHuman $(x)\}$
- $\{x \mid$ isHuman $(x)\} \subseteq\{x \mid$ isMortal $(x)\}$
- $\therefore\{x \mid$ isGreek $(x)\} \subseteq\{x \mid$ isMortal $(x)\}$

In modern logic, we write it as:

$$
\frac{\text { isGreek } \vDash \text { isHuman } \quad \text { isHuman } \vDash \text { isMortal }}{\text { isGreek } \vDash \text { isMortal }}
$$

All Greeks are

 human All humans are mortal\therefore all humans are mortal

The general form of this syllogism is

$$
\frac{a \vDash b \quad b \vDash c}{a \vDash c}
$$

Is this syllogism sound? I.e. valid in every universe?

Checking logic by Venn diagrams

Every red triangle is small Every small triangle is red Some big triangle is green Some small disc is red No red thing is blue
\checkmark

Venn diagrams

Venn diagrams show every possible combination

$$
\begin{array}{ll}
000 & \bar{A} \cap \bar{B} \cap \bar{C} \\
001 & \bar{A} \cap \bar{B} \cap C \\
010 & \bar{A} \cap B \cap \bar{C} \\
011 & \bar{A} \cap B \cap C \\
100 & A \cap \bar{B} \cap \bar{C} \\
101 & A \cap \bar{B} \cap C \\
110 & A \cap B \cap \bar{C} \\
111 & A \cap B \cap C
\end{array}
$$

A rotationally symmetric Venn diagram for $n>1$ sets exists iff n is prime

Venn diagrams

We use light shading to show emptiness of a region

A rotationally symmetric Venn diagram for $n>1$ sets exists iff n is prime

We may write a variable to show non-emptiness of a region

A rotationally symmetric Venn diagram for $n>1$ sets exists iff n is prime

$$
\begin{aligned}
& a \vDash b \quad \text { 'every } a \text { is } b^{\prime} \\
& a \vDash b \quad \text { 'no } a \text { is not } b ' \\
& a \vDash b \quad \text { 'nothing is } a \text { and not } b \text { ' } \\
& a \vDash b \quad a \cap \bar{b}=\varnothing \\
& a \vDash b \quad \neg(a \wedge \neg b) \\
& a \vDash b \quad b \vee \neg a
\end{aligned}
$$

$$
\begin{aligned}
& a \vDash b \quad \text { 'every } a \text { is } b^{\prime} \\
& a \vDash b \quad \text { 'no } a \text { is not } b ' \\
& a \vDash b \quad \text { 'nothing is } a \text { and not } b ' \\
& a \vDash b \quad a \cap \bar{b}=\varnothing \\
& a \vDash b \quad \neg(a \wedge \neg b) \\
& a \vDash b \quad b \vee \neg a
\end{aligned}
$$

Venn syllogism

$$
\frac{a \vDash b \quad b \vDash c}{a \vDash c}
$$

every a is b every b is c every a is c

$$
\frac{a \vDash b \quad b \vDash c}{a \vDash c}
$$

$$
\frac{a \vDash b \quad b \vDash c}{a \vDash c}
$$

$$
\frac{a \vDash b \quad b \vDash c}{a \vDash c}
$$

Combining diagrams

$$
\frac{a \vDash b \quad b \vDash c}{a \vDash c}
$$

Combining diagrams

$$
\frac{a \vDash b \quad b \vDash c}{a \vDash c}
$$

$$
\text { barbara } \frac{a \vDash b \quad b \vDash c}{a \vDash c}
$$

This rule, as we've seen, is sound:
for any predicates a, b, c in any universe, we have:
if the premises (above the line) are valid then the conclusion (below the line) is valid.

Mediaeval logicians gave mnemonic names to syllogisms.
This one is barbara. Consult Wikipedia to find out what that means - but only if you don't value your sanity!
make statements about all of something: 'all a are b '.
We can make universal negative statements: 'no a is b '.

$$
\text { 'no } a \text { is } b \text { ' iff 'every } a \text { is } \neg b \text { ' iff } a \vDash \neg b
$$

make statements about all of something: 'all a are b '.
We can make universal negative statements: 'no a is b '.

$$
\text { 'no } a \text { is } b \text { ' iff 'every } a \text { is } \neg b \text { ' iff } a \vDash \neg b
$$

Here is a syllogism involving universal negatives:

$$
\begin{array}{cl}
s \vDash r \quad r \vDash \neg f \\
s \vDash \neg f
\end{array} \quad \begin{aligned}
& \text { All snakes are reptiles } \\
& \text { No reptile has fur } \\
& \therefore \text { No snake has fur }
\end{aligned}
$$

Is this an instance of barbara (and so valid)?
make statements about all of something: 'all a are b '.
We can make universal negative statements: 'no a is b '.

$$
\text { 'no } a \text { is } b \text { ' iff 'every } a \text { is } \neg b \text { ' iff } a \vDash \neg b
$$

Here is a syllogism involving universal negatives:

$$
\frac{s \vDash r \quad r \vDash \neg f}{s \vDash \neg f}
$$

All snakes are reptiles No reptile has fur
\therefore No snake has fur
Is this an instance of barbara (and so valid)?
For us modern logicians, it is: $a \equiv s, b \equiv r, c \equiv \neg f$.
A negated predicate is also a predicate.

Aristotle differed from us moderns on the relation between 'all' and 'no'. For him, this syllogism contained a universal affirmative and two universal negatives. The mediaeval logicians called it celarent.
The key difference was the 'existential assumption' see later.
whether affirmative or negative, say that some region is empty:

$$
\begin{array}{cc}
\text { all } a \text { are } b & \text { no } a \text { is } b \\
a \vDash b & a \vDash \neg b
\end{array}
$$

whether affirmative or negative, say that some region is empty:

$$
\begin{array}{cc}
\text { all } a \text { are } b & \text { no } a \text { is } b \\
a \vDash b & a \vDash \neg b
\end{array}
$$

What about $\neg a \vDash b$ and $\neg a \vDash \neg b$?
whether affirmative or negative, say that some region is empty:

$$
\begin{array}{cc}
\text { all } a \text { are } b & \text { no } a \text { is } b \\
a \vDash b & a \vDash \neg b
\end{array}
$$

???

$$
\neg a \vDash b
$$

whether affirmative or negative, say that some region is empty:

$$
\begin{aligned}
& \text { all } a \text { are } b \\
& \quad a \vDash b
\end{aligned}
$$

???

$$
\neg a \vDash b
$$

no a is b

$$
a \vDash \neg b
$$

???

$$
\neg a \vDash \neg b
$$

We can observe:

- $a \vDash b$ and $\neg a \vDash \neg b$ are reflections of each other: so $\neg a \vDash \neg b$ is the same as $b \vDash a$. $\neg a \vDash \neg b$ is the contrapositive of $b \vDash a$.
whether affirmative or negative, say that some region is empty:

$$
\begin{array}{cc}
\text { all } a \text { are } b & \text { no } a \text { is } b \\
a \vDash b & a \vDash \neg b
\end{array}
$$

???

$$
\neg a \vDash b
$$

???
$\neg a \vDash \neg b$

We can observe:

- $a \vDash b$ and $\neg a \vDash \neg b$ are reflections of each other: so $\neg a \vDash \neg b$ is the same as $b \vDash a$. $\neg a \vDash \neg b$ is the contrapositive of $b \vDash a$.
- $a \vDash \neg b$ is symmetrical, so is the same as $b \vDash \neg a$ - they are contrapositives. Likewise $\neg a \vDash b$ and $\neg b \vDash a$.

Negation can be tricky - modern classical logic makes it simple.

Natural languages differ, within and between themselves, on how they treat multiple negatives: 'I didn't never do nothing to nobody!'. How does your native language/
dialect treat multiple negatives?

Negation can be tricky - modern classical logic makes it simple.
The law of double negation: $\neg \neg a=a$ (two negatives make a positive).

Natural languages differ, within and between themselves, on how they treat multiple negatives: 'I didn't never do nothing to nobody!'. How does your native language/
dialect treat multiple negatives?

Negation can be tricky - modern classical logic makes it simple.
The law of double negation: $\neg \neg a=a$ (two negatives make a positive).

The law of contraposition: $a \vDash b$ iff $\neg b \vDash \neg a$.

Natural languages differ, within and between themselves, on how they treat multiple negatives: 'I didn't never do nothing to nobody!'. How does your native language/
dialect treat multiple negatives?

Negation can be tricky - modern classical logic makes it simple.
The law of double negation: $\neg \neg a=a$ (two negatives make a positive).

The law of contraposition: $a \vDash b$ iff $\neg b \vDash \neg a$.
Thus we get $a \vDash b$ iff $\neg b \vDash \neg a$ iff $\neg \neg a \vDash \neg \neg b$ iff $a \vDash b$.

$$
\frac{a \vDash b}{\neg b \vDash \neg a}
$$

The double line means the rule works both ways.

Natural languages differ, within and between themselves, on how they treat multiple negatives: 'I didn't never do nothing to nobody!'. How does your native language/
dialect treat multiple negatives?

So far, we have seen (and hopefully agreed on) these sound rules about predicates and \vDash :

- $\neg \neg a=a$ or $\xlongequal[\neg \neg a]{\Rightarrow}$ (double negation)
- $\frac{a \vDash b \quad b \vDash c}{a \vDash c}$ (barbara)
$-\xlongequal[\neg b \vDash \neg a]{a \vDash b}$ (contraposition)

So far, we have seen (and hopefully agreed on) these sound rules about predicates and \vDash :

- $\neg \neg a=a$ or $\xlongequal[\neg \neg a]{\Rightarrow}$ (double negation)
$-\frac{a \vDash b \quad b \vDash c}{a \vDash c}$ (barbara)
$-\underset{\neg b \vDash \neg a}{a \vDash b}$ (contraposition)
We also saw a 'different' (for Aristotle) syllogism with negatives got from barbara by putting $\neg c$ for c :

$$
\begin{array}{cl}
a \vDash b \quad b \vDash \neg c \\
a \vDash \neg c & \quad \text { All snakes are reptiles } \\
\text { No reptile has fur } \\
\therefore \text { No snake has fur }
\end{array}
$$

More syllogisms
By using (un)negated predicates in barbara, we get 8 syllogisms:

$$
\begin{array}{cl}
\frac{a \vDash b \quad b \vDash c}{a \vDash c} & \frac{\neg a \vDash b \quad b \vDash c}{\neg a \vDash c} \\
\frac{a \vDash b \quad b \vDash \neg c}{a \vDash \neg c} & \frac{\neg a \vDash b \quad b \vDash \neg c}{\neg a \vDash \neg c} \\
\frac{a \vDash \neg b \neg b \vDash c}{a \vDash c} & \frac{\neg a \vDash \neg b \neg b \vDash c}{\neg a \vDash c} \\
\frac{a \vDash \neg b \neg b \vDash \neg c}{a \vDash \neg c} & \\
\frac{\neg a \vDash \neg b \neg b \vDash \neg c}{\neg a \vDash \neg c}
\end{array}
$$

By using (un)negated predicates in barbara, we get 8 syllogisms:

$$
\begin{array}{cl}
\frac{a \vDash b \quad b \vDash c}{a \vDash c} & \\
\frac{\neg a \vDash b \quad b \vDash c}{\neg a \vDash c} \\
\frac{a \vDash b \vDash \neg c}{a \vDash \neg c} & \frac{\neg a \vDash b \quad b \vDash \neg c}{\neg a \vDash \neg c} \\
\frac{a \vDash \neg b \neg b \vDash c}{a \vDash c} & \frac{\neg a \vDash \neg b \neg b \vDash c}{\neg a \vDash c} \\
\frac{a \vDash \neg b \neg b \vDash \neg c}{a \vDash \neg c} & \frac{\neg a \vDash \neg b \neg b \vDash \neg c}{\neg a \vDash \neg c}
\end{array}
$$

Aristotle only considered negative predicates on the right of \vDash ($a \vDash \neg b$ means 'no a is b ', so he viewed it as a negative statement about positive predicates). This leaves ...

By using (un)negated predicates in barbara, we get 8 syllogisms:

$$
\begin{aligned}
& \frac{a \vDash b \quad b \vDash c}{a \vDash c} \\
& \frac{a \vDash b \quad b \vDash \neg c}{a \vDash \neg c}
\end{aligned}
$$

Aristotle only considered negative predicates on the right of \vDash ($a \vDash \neg b$ means 'no a is b ', so he viewed it as a negative statement about positive predicates). This leaves ...

Contraposition lets us generate three more (Aristotelian) syllogisms from celarent:

$$
\frac{a \vDash b \quad c \vDash \neg b}{a \vDash \neg c} \quad \frac{a \vDash b \quad b \vDash \neg c}{c \vDash \neg a} \quad \frac{a \vDash b \quad c \vDash \neg b}{c \vDash \neg a} \quad \begin{aligned}
& \text { cesare, camenes, } \\
& \text { camestres }
\end{aligned}
$$

That brings us to 5 sound universal syllogisms. That's all!

$\frac{a \vDash b \quad b \vDash \neg c}{a \vDash c}$
All snakes are reptiles No reptile has fur \therefore All snakes have fur

$$
\frac{a \vDash b \quad b \vDash \neg c}{a \vDash c}
$$

All snakes are reptiles No reptile has fur \therefore All snakes have fur

$$
\frac{a \vDash b \quad b \vDash \neg c}{a \vDash c}
$$

All snakes are reptiles No reptile has fur \therefore All snakes have fur

All snakes are reptiles No reptile has fur \therefore All snakes have fur

All snakes are reptiles No reptile has fur \therefore All snakes have fur
To disprove a syllogism, we need just one universe where it's invalid (e.g. Edinburgh zoo).

All snakes are reptiles No reptile has fur \therefore All snakes have fur
To disprove a syllogism, we need just one universe where it's invalid (e.g. Edinburgh zoo).
Is there a universe where this syllogism is valid?
(Aristotle said 'no'; we moderns differ. Hint: St Patrick.)

From barbara, contraposition, and double negation, we have five sound syllogisms about universal statements:

$$
\begin{aligned}
& \frac{a \vDash b \quad b \vDash c}{a \vDash c} \\
& \frac{a \vDash b \quad b \vDash \neg c}{a \vDash \neg c} \\
& \frac{a \vDash b \quad c \vDash \neg b}{a \vDash \neg c} \\
& \frac{a \vDash b \quad b \vDash \neg c}{c \vDash \neg a} \text { equivalently } \frac{c \vDash b \quad b \vDash \neg a}{a \vDash \neg c} \\
& \frac{a \vDash b \quad c \vDash \neg b}{c \vDash \neg a} \text { equivalently } \frac{c \vDash b \quad a \vDash \neg b}{a \vDash \neg c}
\end{aligned}
$$

From barbara, contraposition, and double negation, we have five sound syllogisms about universal statements:

$$
\frac{a \vDash b \quad b \vDash c}{a \vDash c}
$$

$$
\frac{a \vDash b \quad b \vDash \neg c}{a \vDash \neg c}
$$ previous slide.

$$
\frac{a \vDash b \quad c \vDash \neg b}{a \vDash \neg c}
$$

$$
\frac{a \vDash b \quad b \vDash \neg c}{c \vDash \neg a} \text { equivalently } \frac{c \vDash b \quad b \vDash \neg a}{a \vDash \neg c}
$$

$\frac{a \vDash b \quad b \vDash \neg c}{c \vDash \neg a}$ equivalently $\frac{c \vDash b \quad b \vDash \neg a}{a \vDash \neg c}$

$$
\frac{a \vDash b \quad c \vDash \neg b}{c \vDash \neg a} \text { equivalently } \frac{c \vDash b \quad a \vDash \neg b}{a \vDash \neg c}
$$

Note that the conclusion is negative iff exactly one of the premises is negative - compare the unsound syllogism on the

