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How many distinguishable universes? 21/18

Suppose we have two predicates. How many different true/false
combinations are there?
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So how many universes can we distinguish with two predicates?
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Lots of distinguishable universes

3 predicates, 23 = 8 regions, 28 = 256 different universes
4 predicates, 2* = 16 regions, 2'° = 65536 different universes
How can we characterize a universe?

By saying which regions (i.e. which boolean combinations of
predicates) are inhabited/empty.

Consider Its inhabited regions are 00,10,11, so it is

described by
(maA-b)V(aA-b)V(aAb)

-bV(anb)
—(—-a A b)
aVv-b
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Binary not-SI
prefixes:

Ki (Kibi) 1024 (21°)
Mi (Mebi) 1048576
(220)

Gi (Gibi)
1073741824 (230)
etc.

65536 = 64 Ki



From Truth Tables to Karnaugh Maps 41/18
There are algorithmic ways to simplify boolean formulae.

But Karnaugh Maps are a human way, exploiting our
pattern-matching abilities.

We start with tables of values:

What formula describes

= O
el =]
= O~



From Truth Tables to Karnaugh Maps 42/18

There are algorithmic ways to simplify boolean formulae.

But Karnaugh Maps are a human way, exploiting our
pattern-matching abilities.

We start with tables of values:

What formula describes
a

=]

0
1

= O

Highlight the 1 cells and look for the largest even rectangles that
cover them.



From Truth Tables to Karnaugh Maps 4.3/18

There are algorithmic ways to simplify boolean formulae.

But Karnaugh Maps are a human way, exploiting our
pattern-matching abilities.

We start with tables of values:

What formula describes
a

e =

0
1

= Ol

Highlight the 1 cells and look for the largest even rectangles that
cover them.



From Truth Tables to Karnaugh Maps 4.4/18

There are algorithmic ways to simplify boolean formulae.

But Karnaugh Maps are a human way, exploiting our
pattern-matching abilities.

We start with tables of values:

What formula describes
a

= =lo

0
1

=1

Highlight the 1 cells and look for the largest even rectangles that
cover them.



From Truth Tables to Karnaugh Maps 45/18

There are algorithmic ways to simplify boolean formulae.

But Karnaugh Maps are a human way, exploiting our
pattern-matching abilities.

We start with tables of values:

What formula describes
a

=]
= O

0
1

Highlight the 1 cells and look for the largest even rectangles that
cover them. Thus we see
aVv-b

(By even rectangle, we mean rectangles with width and height
powers of two.)



Four-variable Maps 5.1/18

Things get interesting when we have three or four variables. Write

tables so:
d
‘OO 01 11 10 This order of values
00 is a Gray code. The
01 point is that only
ab 11 one variable changes
10 as you go one step

up/down/left/right.
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Four-variable Maps

5.4/18

Things get interesting when we have three or four variables. Write

tables so:
cd
00 01 This order of values
00 is a Gray code. The
01 point is that only
ab 11 one variable changes
10 as you go one step
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Four-variable Maps 5.5/18

Things get interesting when we have three or four variables. Write
tables so:

cd
([0 01 11 i)

This order of values
is a Gray code. The

b 01 point is that only
1 one variable changes
10 as you go one step

up/down/left/right.
The order of entries means that the 1-values of each variable occupy
adjacent rows (c, d) or columns (a, b). What about the 0-values?
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cd
00 01 11 10
00
01
ab 11

10
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The Karnaugh Map as a torus
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d
00 01 11 10
00
01
ab 11
10

N

The 0-values for each variable occupy adjacent rows/columns if we _
view the table as wrapping round bottom to top and right to left. V'@ PNgWing.com




KM example 1

cd
00 01 11 10
00 0 0 0 0
01 0 1 1 0
ab
11 0 1 1 0
10 0 0 0 0
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KM example 2
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cd
00 01 11 10
0 0 0 0
1 1 0 0
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cd
00 01 11 10
0 0 0 0
DRIBE
Ll oo
0 0 0 0
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cd
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01 1 1 0 0 b A —cC
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11 1 1 0 0
10 0 0 0 0
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cd
00 01 11 10
00 1 1 0 0
01 1 1 0 0
ab
11 0 0 1 1
10 0 0 1 1
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cd
00 01 11 10
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cd
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11 0 0 0 0

100 1] 0o | o [[1]
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cd
00 01 11 10

00 | 1 0 0 1

00 0 0| 0O b A —d

11 0 0 0 0

100 1] 0o | o [[1]
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cd
00 01 11 10

00 m 0 0| 0

01 M m 00
ab

11 | 0 M 1] 1

0] 00 l1 1
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(aAbA=cAd)V(aAc)
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Disjunctive Normal Form 15.1/18

The descriptions we've built from KMs all have the form
(/\)\/(/\)\/

so we're describing unions of even rectangles.
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V(Aes)
J

i
where each pj; is either a literal (a boolean variable/predicate
a,b,...) or a negated literal (—a, —b,...).
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The descriptions we've built from KMs all have the form
(/\)\/(/\)\/

so we're describing unions of even rectangles.

This is disjunctive normal form (DNF). Formally, we say a formula is

in DNF iff has the form
V(Aes)
J

i
where each pj; is either a literal (a boolean variable/predicate
a,b,...) or a negated literal (—a, —b,...).
Later we will see more mechanistic ways of converting to DNF.
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Sometimes it's a bit easier to look at the zeros.
Looking at the ones:

cd
00 01 11 10

00 1 1 1 1

01 1 0 0 1

ab
11 1 0 0 1

10 1 1 1 1
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o o [t |1
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Another example:
Looking at the zeros:

cd
00 01 11 10

o @) 1]

o1 1 111 ~((=aA=bA—c)
11111 V(aA-bAc))

011 @0
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Another example:
Looking at the zeros:
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Conjunctive Normal Form 18.2/18

Take a formula \/;(A; pj) in DNF.
Its negation converts by De Morgan's laws to conjunctive normal
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Take a formula \/;(A; pj) in DNF.
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|
Any boolean expression can be put into either DNF or CNF — each
is better for some applications.



Conjunctive Normal Form 18.4/15

Take a formula \/;(A; pj) in DNF.
Its negation converts by De Morgan's laws to conjunctive normal

form:
V() A

|
Any boolean expression can be put into either DNF or CNF — each
is better for some applications.

If | give you a formula in DNF, can you convert it (not its negation)
to CNF? How big might the result be?



