Informatics 1 - Introduction to Computation
 Computation and Logic
 Julian Bradfield based on materials by
 Michael P. Fourman
 Karnaugh Maps

George Boole, 1815-1864

Maurice Karnaugh, 1924-

Suppose we have two predicates. How many different true/false combinations are there?

So how many universes can we distinguish with two predicates?

Suppose we have two predicates. How many different true/false combinations are there?

So how many universes can we distinguish with two predicates?

Suppose we have two predicates. How many different true/false combinations are there?

So how many universes can we distinguish with two predicates?

3 predicates, $2^{3}=8$ regions, $2^{8}=256$ different universes
4 predicates, $2^{4}=16$ regions, $2^{16}=65536$ different universes How can we characterize a universe?
By saying which regions (i.e. which boolean combinations of predicates) are inhabited/empty.

Consider

Its inhabited regions are $00,10,11$, so it is described by

$$
\begin{aligned}
(\neg a \wedge \neg b) & \vee(a \wedge \neg b) \vee(a \wedge b) \\
\neg b & \vee(a \wedge b) \\
& (\neg a \wedge b) \\
a & \vee \neg b
\end{aligned}
$$

Binary not-SI prefixes:
Ki (Kibi) $1024\left(2^{10}\right)$
Mi (Mebi) 1048576
$\left(2^{20}\right)$
Gi (Gibi)
$1073741824\left(2^{30}\right)$ etc.
$65536=64 \mathrm{Ki}$

There are algorithmic ways to simplify boolean formulae.
But Karnaugh Maps are a human way, exploiting our pattern-matching abilities.
We start with tables of values:

What formula describes $\left.\begin{array}{ll|ll} & & 0 & 1 \\ \hline\end{array} \quad \begin{array}{l}0 \\ \hline\end{array} \quad 1 \begin{array}{l}0 \\ 1\end{array}\right)$

There are algorithmic ways to simplify boolean formulae.
But Karnaugh Maps are a human way, exploiting our pattern-matching abilities.
We start with tables of values:

$$
b
$$

What formula describes

	b		
	0	1	
0	1	0	
1	1	1	

Highlight the 1 cells and look for the largest even rectangles that cover them.

There are algorithmic ways to simplify boolean formulae.
But Karnaugh Maps are a human way, exploiting our pattern-matching abilities.
We start with tables of values:

$$
b
$$

What formula describes

Highlight the 1 cells and look for the largest even rectangles that cover them.

There are algorithmic ways to simplify boolean formulae.
But Karnaugh Maps are a human way, exploiting our pattern-matching abilities.
We start with tables of values:

		b		
What formula describes			0	1
	0	1	0	
	a			
	1	1	1	

Highlight the 1 cells and look for the largest even rectangles that cover them.

There are algorithmic ways to simplify boolean formulae.
But Karnaugh Maps are a human way, exploiting our pattern-matching abilities.
We start with tables of values:

$$
b
$$

What formula describes

	0	1	
0	1	0	
1	1	1	

Highlight the 1 cells and look for the largest even rectangles that cover them. Thus we see

$$
a \vee \neg b
$$

(By even rectangle, we mean rectangles with width and height powers of two.)

Things get interesting when we have three or four variables. Write tables so:

	cd
	00011110
00	
- 01	
${ }^{a b} 11$	
10	

This order of values is a Gray code. The point is that only one variable changes as you go one step up/down/left/right.

Things get interesting when we have three or four variables. Write tables so:

This order of values is a Gray code. The point is that only one variable changes as you go one step up/down/left/right.

Things get interesting when we have three or four variables. Write tables so:

This order of values is a Gray code. The point is that only one variable changes as you go one step up/down/left/right.

Things get interesting when we have three or four variables. Write tables so:

	cd
	00011110
00	
ab 01	
ab 11	
10	

This order of values is a Gray code. The point is that only one variable changes as you go one step up/down/left/right.

Things get interesting when we have three or four variables. Write tables so:

	cd	
	$0 0 \longdiv { 1 1 }$	10
00		
ab 01		
ab 11		
10		

The order of entries means that the 1 -values of each variable occupy adjacent rows (c, d) or columns (a, b). What about the 0 -values?

This order of values is a Gray code. The point is that only one variable changes as you go one step up/down/left/right.

	cd
	00011110
00	
ab 01	
11	
10	

	cd
	00011110
00	
01	
ab 11	
10	

	cd
	00011110
00	
$a b \begin{aligned} & 01 \\ & 11\end{aligned}$	
10	

	cd	
	0001	1110
00		
- 01		
${ }^{\text {ab }} 11$		
10		

	cd		
	00	0111	10
00			
- 01			
${ }^{\text {ab }} 11$			
10			

The 0 -values for each variable occupy adjacent rows/columns if we view the table as wrapping round bottom to top and right to left.

via pngwing.com

		$c d$			
			00	01	11

cd					
	00	01	11	10	$b \wedge d$
00	0	0	0	0	
01	0	1	1	0	
11	0	1	1	0	
10	0	0	0	0	

		$c d$			
		00	01	11	10
	00	0	0	0	0
	01	1	1	0	0
	0		1	1	0
	11	1	1	0	
	10	0	0	0	0

		$c d$			
			00	01	11

cd					
	00	01	11	10	$b \wedge \neg c$
00	0	0	0	0	
01	1	1	0	0	
ab 11	1	1	0	0	
10	0	0	0	0	

	00	01	11	10
00	1	1	1	1
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

		$c d$			
			00	01	11

	cd			
	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	0	0	0	0
10	0	0	0	0

	cd			
	00	01	11	10
00	1	1	0	0
01	1	1	0	0
11	0	0	1	1
10	0	0	1	1

	00	01	11	10
00	1	1	0	0
$a b$	1	1	0	0
	0	0	1	1
10	0	0	1	1

		$c d$			
		00	01	11	10
	00	1 1 0 0 01 1 1 0 0 0 11 0 0 1 1 10 0 0	1	1	

$$
(\neg a \wedge \neg c) \vee(a \wedge c)
$$

	00	01	11	10
00	1	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1	0	0	1

KM example 7

		$c d$			
		00	01	11	10
	00	1	0	0	0
	0	01	1	1	0

KM example 7

	cd			
	00	01	11	10
00	1	0	0	0
01	1	1	0	0
11	0	1	1	1
10	0	0	1	1

cd					
	00	01	11	10	$(\neg a \wedge \neg c \wedge \neg d)$
00	1	0	0	0	
00	1	0	0	0	$\vee(b \wedge \neg c \wedge d)$
${ }^{0} 01$	1	1	0	0	$\vee(a \wedge c)$
11	0	1	1	1	
10	0	0	1	1	

KM example 8

		$c d$			
		00	01	11	10
	00	0	0	0	0
	01	0	0	0	0
	0	0	0	1	1
	11	0	1	1	1
	10	0	0	1	1

KM example 8

		$c d$			
			00	01	11

		$c d$			
			00	01	11

$$
(a \wedge b \wedge \neg c \wedge d) \vee(a \wedge c)
$$

The descriptions we've built from KMs all have the form

$$
(\cdots \wedge \cdots) \vee(\cdots \wedge \cdots) \vee \cdots
$$

so we're describing unions of even rectangles.

The descriptions we've built from KMs all have the form

$$
(\cdots \wedge \cdots) \vee(\cdots \wedge \cdots) \vee \cdots
$$

so we're describing unions of even rectangles.
This is disjunctive normal form (DNF). Formally, we say a formula is in DNF iff has the form

$$
\bigvee_{i}\left(\bigwedge_{j} p_{i j}\right)
$$

where each $p_{i j}$ is either a literal (a boolean variable/predicate a, b, \ldots) or a negated literal $(\neg a, \neg b, \ldots)$.

The descriptions we've built from KMs all have the form

$$
(\cdots \wedge \cdots) \vee(\cdots \wedge \cdots) \vee \cdots
$$

so we're describing unions of even rectangles.
This is disjunctive normal form (DNF). Formally, we say a formula is in DNF iff has the form

$$
\bigvee_{i}\left(\bigwedge_{j} p_{i j}\right)
$$

where each $p_{i j}$ is either a literal (a boolean variable/predicate a, b, \ldots) or a negated literal ($\neg a, \neg b, \ldots$).
Later we will see more mechanistic ways of converting to DNF.

KMs：looking at zeros

Sometimes it＇s a bit easier to look at the zeros．
Looking at the ones：

		$c d$			
		00	01	11	10
	00	1	1	1	1
	01	1	0	0	1
	$0 b$	11	1	0	0

KMs: looking at zeros

Sometimes it's a bit easier to look at the zeros.
Looking at the ones:

		$c d$								
							00	01	11	10
	00	1	1	1	1					
	01	1	0	0	1					
$a b$		11	1	0	0					

$$
\neg b \vee \neg d
$$

KMs: looking at zeros

Sometimes it's a bit easier to look at the zeros.
Looking at the zeros:

Another example：
Looking at the ones：

	cd			
	00	01	11	10
00	0	0	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	0	0

KMs: looking at zeros

Another example:
Looking at the ones:

	cd			
	00	01	11	10
00	0	0	1	1
01	1	1	1	1
$a b$ 11	1	1	1	1
10	1	1	0	0

$$
(\neg a \wedge c) \vee(a \wedge \neg c) \vee b
$$

KMs: looking at zeros

Another example:
Looking at the zeros:

		$c d$			
		00	01	11	10
	00	0	0	1	1
	01	1	1	1	1
	$0 b$	11	1	1	1
	1	1			
	10	1	1	0	0

$$
\begin{aligned}
& \neg((\neg a \wedge \neg b \wedge \neg c) \\
& \quad \vee(a \wedge \neg b \wedge c))
\end{aligned}
$$

Another example:
Looking at the zeros:

		$c d$			
		00	01	11	10
	00	0	0	1	1
	01	1	1	1	1
	$0 b$			1	
	11	1	1	1	1
	10	1	1	0	0

$$
(a \vee b \vee c) \wedge(\neg a \vee b \vee \neg c)
$$

Take a formula $\bigvee_{i}\left(\bigwedge_{j} p_{i j}\right)$ in DNF.

Take a formula $\bigvee_{i}\left(\bigwedge_{j} p_{i j}\right)$ in DNF.
Its negation converts by De Morgan's laws to conjunctive normal form:

$$
\neg \bigvee_{i}\left(\bigwedge_{j} p_{i j}\right)=\bigwedge_{i}\left(\bigvee_{j} \neg p_{i j}\right)
$$

Take a formula $\bigvee_{i}\left(\bigwedge_{j} p_{i j}\right)$ in DNF.
Its negation converts by De Morgan's laws to conjunctive normal form:

$$
\neg \bigvee_{i}\left(\bigwedge_{j} p_{i j}\right)=\bigwedge_{i}\left(\bigvee_{j} \neg p_{i j}\right)
$$

Any boolean expression can be put into either DNF or CNF - each is better for some applications.

Take a formula $\bigvee_{i}\left(\bigwedge_{j} p_{i j}\right)$ in DNF.
Its negation converts by De Morgan's laws to conjunctive normal form:

$$
\neg \bigvee_{i}\left(\bigwedge_{j} p_{i j}\right)=\bigwedge_{i}\left(\bigvee_{j} \neg p_{i j}\right)
$$

Any boolean expression can be put into either DNF or CNF - each is better for some applications.
If I give you a formula in DNF, can you convert it (not its negation) to CNF? How big might the result be?

