Informatics 1 – Introduction to Computation Computation and Logic Julian Bradfield based on materials by Michael P. Fourman

Karnaugh Maps

George Boole, 1815–1864

Maurice Karnaugh, 1924–

How many distinguishable universes?

Suppose we have two predicates. How many different true/false combinations are there?

So how many universes can we distinguish with two predicates?

How many distinguishable universes?

Suppose we have two predicates. How many different true/false combinations are there?

So how many universes can we distinguish with two predicates?

How many distinguishable universes?

Suppose we have two predicates. How many different true/false combinations are there?

So how many universes can we distinguish with two predicates?

Lots of distinguishable universes

3 predicates, $2^3 = 8$ regions, $2^8 = 256$ different universes 4 predicates, $2^4 = 16$ regions, $2^{16} = 65536$ different universes How can we characterize a universe?

By saying which regions (i.e. which boolean combinations of predicates) are inhabited/empty.

Consider described by $(\neg a \land \neg b) \lor (a \land \neg b) \lor (a \land b)$ $\neg b \lor (a \land b)$ $\neg (\neg a \land b)$ $a \lor \neg b$ Binary not-SI prefixes: Ki (Kibi) 1024 (2¹⁰) Mi (Mebi) 1048576 (2²⁰) Gi (Gibi) 1073741824 (2³⁰) etc. 65536 = 64 Ki

There are algorithmic ways to simplify boolean formulae. But Karnaugh Maps are a human way, exploiting our pattern-matching abilities.

We start with tables of values:

There are algorithmic ways to simplify boolean formulae. But Karnaugh Maps are a human way, exploiting our pattern-matching abilities.

We start with tables of values:

Highlight the 1 cells and look for the largest **even rectangles** that cover them.

There are algorithmic ways to simplify boolean formulae. But Karnaugh Maps are a human way, exploiting our pattern-matching abilities.

We start with tables of values:

Highlight the 1 cells and look for the largest **even rectangles** that cover them.

There are algorithmic ways to simplify boolean formulae. But Karnaugh Maps are a human way, exploiting our pattern-matching abilities.

We start with tables of values:

Highlight the 1 cells and look for the largest **even rectangles** that cover them.

There are algorithmic ways to simplify boolean formulae. But Karnaugh Maps are a human way, exploiting our pattern-matching abilities.

We start with tables of values:

Highlight the 1 cells and look for the largest $\ensuremath{\text{even rectangles}}$ that cover them. Thus we see

$$a \lor \neg b$$

(By *even rectangle*, we mean rectangles with width and height powers of two.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ めへで

Things get interesting when we have three or four variables. Write tables so:

This order of values is a Gray code. The point is that only one variable changes as you go one step up/down/left/right.

Things get interesting when we have three or four variables. Write tables so:

This order of values is a Gray code. The point is that only one variable changes as you go one step up/down/left/right.

Things get interesting when we have three or four variables. Write tables so:

This order of values is a Gray code. The point is that only one variable changes as you go one step up/down/left/right.

Things get interesting when we have three or four variables. Write tables so:

This order of values is a Gray code. The point is that only one variable changes as you go one step up/down/left/right.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ めへで

Things get interesting when we have three or four variables. Write tables so:

This order of values is a Gray code. The point is that only one variable changes as you go one step up/down/left/right.

The order of entries means that the 1-values of each variable occupy adjacent rows (c, d) or columns (a, b). What about the 0-values?

6.1/18

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

6.4/18

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

The 0-values for each variable occupy adjacent rows/columns *if we* view the table as wrapping round bottom to top and right to left.

via pngwing.com

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

7.1/18

 $b \wedge d$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - 釣�?

8.1/18

 $b \wedge \neg c$

 $\neg a \land \neg b$

10.2/18

 $\neg a \land \neg d$

<ロ> <0</p>

11.1/18

11.3/18

12.1/18

 $\neg b \land \neg d$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

13.1/18

$$\begin{pmatrix} \neg a \land \neg c \land \neg d \end{pmatrix} \\ \lor (b \land \neg c \land d) \\ \lor (a \land c)$$

14.1/18

$$(a \wedge b \wedge \neg c \wedge d) \lor (a \wedge c)$$

 $(a \wedge b \wedge d) \vee (a \wedge c)$

Disjunctive Normal Form

The descriptions we've built from KMs all have the form

$$(\cdots \wedge \cdots) \lor (\cdots \wedge \cdots) \lor \cdots$$

so we're describing unions of even rectangles.

Disjunctive Normal Form

The descriptions we've built from KMs all have the form

$$(\cdots \land \cdots) \lor (\cdots \land \cdots) \lor \cdots$$

so we're describing unions of even rectangles.

This is disjunctive normal form (DNF). Formally, we say a formula is in DNF iff has the form

$$\bigvee_{i} \left(\bigwedge_{j} p_{ij} \right)$$

where each p_{ij} is either a literal (a boolean variable/predicate a, b, ...) or a negated literal $(\neg a, \neg b, ...)$.

Disjunctive Normal Form

The descriptions we've built from KMs all have the form

$$(\cdots \land \cdots) \lor (\cdots \land \cdots) \lor \cdots$$

so we're describing unions of even rectangles.

This is disjunctive normal form (DNF). Formally, we say a formula is in DNF iff has the form

$$\bigvee_{i} \left(\bigwedge_{j} p_{ij} \right)$$

where each p_{ij} is either a literal (a boolean variable/predicate a, b, ...) or a negated literal ($\neg a, \neg b, ...$).

Later we will see more mechanistic ways of converting to DNF.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ めへで

Sometimes it's a bit easier to look at the zeros. Looking at the ones:

Sometimes it's a bit easier to look at the zeros. Looking at the ones:

Sometimes it's a bit easier to look at the zeros. Looking at the zeros:

 $\neg (b \land d)$

Another example: Looking at the ones:

Another example: Looking at the ones:

 $(\neg a \land c) \lor (a \land \neg c) \lor b$

Another example: Looking at the zeros:

$$\neg((\neg a \land \neg b \land \neg c)) \lor (a \land \neg b \land c))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Another example: Looking at the zeros:

$$(a ee b ee c) \wedge (
eg a ee b ee
eg c)$$

・ロト・日本・日本・日本・日本・日本

Take a formula $\bigvee_i (\bigwedge_j p_{ij})$ in DNF.

Take a formula $\bigvee_i (\bigwedge_j p_{ij})$ in DNF. Its negation converts by De Morgan's laws to conjunctive normal form:

$$\neg\bigvee_{i}\left(\bigwedge_{j}p_{ij}\right)=\bigwedge_{i}\left(\bigvee_{j}\neg p_{ij}\right)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Take a formula $\bigvee_i (\bigwedge_j p_{ij})$ in DNF. Its negation converts by De Morgan's laws to conjunctive normal form:

$$\neg \bigvee_{i} \left(\bigwedge_{j} p_{ij} \right) = \bigwedge_{i} \left(\bigvee_{j} \neg p_{ij} \right)$$

Any boolean expression can be put into either DNF or CNF – each is better for some applications.

Take a formula $\bigvee_i (\bigwedge_j p_{ij})$ in DNF. Its negation converts by De Morgan's laws to conjunctive normal form:

$$\neg\bigvee_{i}\left(\bigwedge_{j}\rho_{ij}\right)=\bigwedge_{i}\left(\bigvee_{j}\neg\rho_{ij}\right)$$

Any boolean expression can be put into either DNF or CNF – each is better for some applications.

If I give you a formula in DNF, can you convert it (*not* its negation) to CNF? How big might the result be?