Informatics 1 — Introduction to Computation
Computation and Logic
Julian Bradfield
based on materials by
Michael P. Fourman

Karnaugh Maps

George Boole,
1815-1864

Maurice Karnaugh,
1924-

How many distinguishable universes? 21/18

Suppose we have two predicates. How many different true/false
combinations are there?

a b

So how many universes can we distinguish with two predicates?

How many distinguishable universes?

Suppose we have two predicates. How many different true/false
combinations are there?

00

22 =4
a b

So how many universes can we distinguish with two predicates?

2.2/18

How many distinguishable universes? 23/18

Suppose we have two predicates. How many different true/false
combinations are there?

a b

So how many universes can we distinguish with two predicates?

El[[]@
[
[

0e

0.
S

IS

K
clele

)
)
)
)

24 — 16 = 2?°

s

2
5
6
:

Lots of distinguishable universes

3 predicates, 23 = 8 regions, 28 = 256 different universes
4 predicates, 2* = 16 regions, 2'° = 65536 different universes
How can we characterize a universe?

By saying which regions (i.e. which boolean combinations of
predicates) are inhabited/empty.

Consider Its inhabited regions are 00,10,11, so it is

described by
(maA-b)V(aA-b)V(aAb)

-bV(anb)
—(—-a A b)
aVv-b

3.1/18

Binary not-SI
prefixes:

Ki (Kibi) 1024 (21°)
Mi (Mebi) 1048576
(220)

Gi (Gibi)
1073741824 (230)
etc.

65536 = 64 Ki

From Truth Tables to Karnaugh Maps 41/18
There are algorithmic ways to simplify boolean formulae.

But Karnaugh Maps are a human way, exploiting our
pattern-matching abilities.

We start with tables of values:

What formula describes

= O
el =]
= O~

From Truth Tables to Karnaugh Maps 42/18

There are algorithmic ways to simplify boolean formulae.

But Karnaugh Maps are a human way, exploiting our
pattern-matching abilities.

We start with tables of values:

What formula describes
a

=]

0
1

= O

Highlight the 1 cells and look for the largest even rectangles that
cover them.

From Truth Tables to Karnaugh Maps 4.3/18

There are algorithmic ways to simplify boolean formulae.

But Karnaugh Maps are a human way, exploiting our
pattern-matching abilities.

We start with tables of values:

What formula describes
a

e =

0
1

= Ol

Highlight the 1 cells and look for the largest even rectangles that
cover them.

From Truth Tables to Karnaugh Maps 4.4/18

There are algorithmic ways to simplify boolean formulae.

But Karnaugh Maps are a human way, exploiting our
pattern-matching abilities.

We start with tables of values:

What formula describes
a

= =lo

0
1

=1

Highlight the 1 cells and look for the largest even rectangles that
cover them.

From Truth Tables to Karnaugh Maps 45/18

There are algorithmic ways to simplify boolean formulae.

But Karnaugh Maps are a human way, exploiting our
pattern-matching abilities.

We start with tables of values:

What formula describes
a

=]
= O

0
1

Highlight the 1 cells and look for the largest even rectangles that
cover them. Thus we see
aVv-b

(By even rectangle, we mean rectangles with width and height
powers of two.)

Four-variable Maps 5.1/18

Things get interesting when we have three or four variables. Write

tables so:
d
‘OO 01 11 10 This order of values
00 is a Gray code. The
01 point is that only
ab 11 one variable changes
10 as you go one step

up/down/left/right.

Four-variable Maps 5.2/18

Things get interesting when we have three or four variables. Write

tables so:
cd
‘OO 01 11 10 This order of values
00 is a Gray code. The
01 point is that only
ab 11 one variable changes
as you go one step

up/down/left/right.

Four-variable Maps 5.3/18

Things get interesting when we have three or four variables. Write
tables so:
d

|00 01 11 10

This order of values
00 is a Gray code. The
01 point is that only

ab 11 one variable changes
10 as you go one step

up/down/left/right.

Four-variable Maps

5.4/18

Things get interesting when we have three or four variables. Write

tables so:
cd
00 01 This order of values
00 is a Gray code. The
01 point is that only
ab 11 one variable changes
10 as you go one step

up/down/left/right.

Four-variable Maps 5.5/18

Things get interesting when we have three or four variables. Write
tables so:

cd
([0 01 11 i)

This order of values
is a Gray code. The

b 01 point is that only
1 one variable changes
10 as you go one step

up/down/left/right.
The order of entries means that the 1-values of each variable occupy
adjacent rows (c, d) or columns (a, b). What about the 0-values?

The Karnaugh Map as a torus

6.1/18

cd
00 01 11 10
00
01
ab 11

10

The Karnaugh Map as a torus

6.2/18

cd
00 01 11 10
00
01
ab 11

10

The Karnaugh Map as a torus

6.3/18

cd
00 01 11 10
00
01
ab 11

10

The Karnaugh Map as a torus

6.4/18

cd
00 01 11 10
00
01
ab 11

10

The Karnaugh Map as a torus

6.5/18

cd
00 01 11 10
00
01
ab 11

10

The Karnaugh Map as a torus

6.6/18

d
00 01 11 10
00
01
ab 11
10

N

The 0-values for each variable occupy adjacent rows/columns if we _
view the table as wrapping round bottom to top and right to left. V'@ PNgWing.com

KM example 1

cd
00 01 11 10
00 0 0 0 0
01 0 1 1 0
ab
11 0 1 1 0
10 0 0 0 0

7.1/18

KM example 1

ab

00

01

11

10

cd
01 11 10
0 0 0
i
Ll o
0 0 0

7.2/18

KM example 1

ab

00

01

11

10

cd
00 01 11 10
o0 0o
0 Fﬂ 0
T s
o0 0o

bAd

7.3/18

KM example 2

00

01
ab

11

10

8.1/18

cd
00 01 11 10
0 0 0 0
1 1 0 0
1 1 0 0
0 0 0 0

KM example 2

00

01
ab

11

10

8.2/18

cd
00 01 11 10
0 0 0 0
DRIBE
Ll oo
0 0 0 0

KM example 2

8.3/18

cd
00 01 11 10
00 0 0 0 0
01 1 1 0 0 b A —cC
ab
11 1 1 0 0
10 0 0 0 0

KM example 3

cd
00 01 11 10
00 1 1 1 1
01 0 0 0 0
ab
11 0 0 0 0
10 0 0 0 0

9.1/18

KM example 3

cd
00 01 11 10
00 1 1 1 1
01 0 0 0 0
ab
11 0 0 0 0
10 0 0 0 0

9.2/18

KM example 3

cd
00 01 11 10
00 1 1 1 1
01 0 0 0 0
ab
11 0 0 0 0
10 0 0 0 0

—a A —b

0.3/18

KM example 4

cd
00 01 11 10
00 1 0 0 1
01 1 0 0 1
ab
11 0 0 0 0
10 0 0 0 0

10.1/18

KM example 4

o0l 1] o | o |[[1 |
ot | 1f| o | o |[1|

11 0 0 0 0

ab

10 0 0 0 0

10.2/18

KM example 4

o0l 1] o | o |[[1 |
o1l 1|l o | o |1

11 0 0 0 0

ab

10 0 0 0 0

—a A\ —d

10.3/18

KM example 5

cd
00 01 11 10
00 1 1 0 0
01 1 1 0 0
ab
11 0 0 1 1

10 0 0 1

11.1/18

KM example 5 112/18

cd
00 01 11 10
00 1 1 0 0
01 1 1 0 0
ab
11 0 0 1 1
10 0 0 1 1

KM example 5

ab

00

01

11

10

T o
SNy
o o [
ol

(maA-c)V(aAc)

KM example 6

cd
00 01 11 10
00 1 0 0 1
01 0 0 0 0
ab
11 0 0 0 0

10 1 0 0

12.1/18

KM example 6

cd
00 01 11 10

00 1 0 0 1

01 0 0 0 0

ab
11 0 0 0 0

100 1] 0o | o [[1]

12.2/18

KM example 6

cd
00 01 11 10

00 | 1 0 0 1

00 0 0| 0O b A —d

11 0 0 0 0

100 1] 0o | o [[1]

ab

12.3/18

KM example 7

cd
00 01 11 10
00 1 0 0 0
01 1 1 0 0

ab

11 0 1 1

10 0 0 1

13.1/18

KM example 7 132/18

cd
00 01 11 10

00 m 0 0| 0

01 M m 00
ab

11 | 0 M 1] 1

0] 00 l1 1

KM example 7

ab

00

01

11

10

ﬁ} 0 0|0
bj 1] o] o
Wi
o | o |l 1]

(maA-cA—d)
V(bA-cAd)
V(aAc)

KM example 8

ab

00

01

11

10

cd
00 01 11 10
0 0 0 0
0 0 0 0
0 1 1 1
0 0 1 1

14.1/18

KM example 8 14.2/18

cd
00 01 11 10

00 0 0 0 0

01 0 0 0 0

u o |@|E
10 0 0 LJ

ab

KM example 8

ab

00

01

11

10

cd
00 01 11 10
0 0 0 0
0 0 0 0
o B[
o oy

14.3/18

(aAbA=cAd)V(aAc)

KM example 8

ab

00

01

11

10

cd
00 01 11 10
0 0 0 0
010100 (aAbAd)V(aAc)
o (1 |[1] 1}
o | o |11

14.4/18

Disjunctive Normal Form 15.1/18

The descriptions we've built from KMs all have the form
(/\)\/(/\)\/

so we're describing unions of even rectangles.

Disjunctive Normal Form 15.2/18

The descriptions we've built from KMs all have the form
(/\)\/(/\)\/

so we're describing unions of even rectangles.

This is disjunctive normal form (DNF). Formally, we say a formula is

in DNF iff has the form
V(Aes)
J

i
where each pj; is either a literal (a boolean variable/predicate
a,b,...) or a negated literal (—a, —b,...).

Disjunctive Normal Form 15.3/18

The descriptions we've built from KMs all have the form
(/\)\/(/\)\/

so we're describing unions of even rectangles.

This is disjunctive normal form (DNF). Formally, we say a formula is

in DNF iff has the form
V(Aes)
J

i
where each pj; is either a literal (a boolean variable/predicate
a,b,...) or a negated literal (—a, —b,...).
Later we will see more mechanistic ways of converting to DNF.

KMs: looking at zeros 16.1/18

Sometimes it's a bit easier to look at the zeros.
Looking at the ones:

cd
00 01 11 10

00 1 1 1 1

01 1 0 0 1

ab
11 1 0 0 1

10 1 1 1 1

KMs: looking at zeros 162/18

Sometimes it's a bit easier to look at the zeros.
Looking at the ones:

cd
00 01 11 10

00 1 1 1 1

01 1[0 | 0 ||1 bV —d

11 1 0 0 1

ab

10 1 1 1 1

KMs: looking at zeros

Sometimes it's a bit easier to look at the zeros.
Looking at the zeros:

cd
00 01 11 10
00 1 1 1 1
01 1 0 0 1 _|(b A d)
ab
11 1 0 0 1
10 1 1 1 1

16.3/18

KMs: looking at zeros

Another example:
Looking at the ones:

cd
00 01 11 10
00 0 0 1 1
01 1 1 1 1
ab
11 1 1 1 1
10 1 1 0 0

17.1/18

KMs: looking at zeros

Another example:

Looking at the ones:

ab

00

01

11

10

cd
00 01 11 10
o o [t |1
BN
1| 1] 1| 1]
A 1o 0

(maAc)V(aA—-c)V b

17.2/18

KMs: looking at zeros 173/18

Another example:
Looking at the zeros:

cd
00 01 11 10

o @) 1]

o1 1 111 ~((=aA=bA—c)
11111 V(aA-bAc))

011 @0

ab

KMs: looking at zeros

Another example:
Looking at the zeros:

cd
00 01 11 10
00 0 0 1 1
01 1 1 1 1
ab
11 1 1 1 1
10 1 1 0 0

(aVbVec)A(—-aV bV -c)

17.4/18

Conjunctive Normal Form 18.1/18

Take a formula \/;(A; pj) in DNF.

Conjunctive Normal Form 18.2/18

Take a formula \/;(A; pj) in DNF.
Its negation converts by De Morgan's laws to conjunctive normal

form:
V() A

i

Conjunctive Normal Form 18.3/18

Take a formula \/;(A; pj) in DNF.
Its negation converts by De Morgan's laws to conjunctive normal

form:
V() A

|
Any boolean expression can be put into either DNF or CNF — each
is better for some applications.

Conjunctive Normal Form 18.4/15

Take a formula \/;(A; pj) in DNF.
Its negation converts by De Morgan's laws to conjunctive normal

form:
V() A

|
Any boolean expression can be put into either DNF or CNF — each
is better for some applications.

If | give you a formula in DNF, can you convert it (not its negation)
to CNF? How big might the result be?

