
Informatics 1
Functional Programming Lecture 2

Lists and Comprehensions

Don Sannella
University of Edinburgh

Part I

Lists

The List

nums :: [Int]
nums = [1,2,3]

chars :: [Char]
chars = [’I’,’n’,’f’,’1’,’A’]

-- or, equivalently
str :: String
str = "Inf1A"

numss :: [[Int]]
numss = [[1],[2,4,2],[],[3,5]]

funs :: [Picture -> Picture]
funs = [invert,flipV]

oops = [1,"Inf1A",[2,3]] -- type error!

count :: [Int]
count = [1..10]

Putting together and taking apart lists

> 1 : [2,3]
[1,2,3]

> [1,2] : 3 -- type error!
<interactive>:1:1: error:

Non type-variable argument in the constraint: Num [[t]]
(Use FlexibleContexts to permit this)

When checking the inferred type
it :: forall t. (Num [[t]], Num t) => [[t]]

head :: [a] -> a
head (x : xs) = x

> head [1,2,3]
1

> tail [1,2,3]
[2,3]

Part II

List Comprehensions

List comprehensions — Generators

> [x*x | x <- [1,2,3]]
[1,4,9]

> [toLower c | c <- "Hello, World!"]
"hello, world!"

> [(x, even x) | x <- [1,2,3]]
[(1,False),(2,True),(3,False)]

> [if even x then x else x+1 | x <- [4,5,6]]
[4,6,6]

x <- [1,2,3] is called a generator

<- is pronounced drawn from

List comprehensions — Guards

> [x | x <- [1,2,3], odd x]
[1,3]

> [x*x | x <- [1,2,3], odd x]
[1,9]

> [x | x <- [42,-5,24,0,-3], x > 0]
[42,24]

> [toLower c | c <- "Hello, World!", isAlpha c]
"helloworld"

odd x is called a guard

Sum, Product

> sum [1,2,3]
6

> sum []
0

> sum [x*x | x <- [1,2,3], odd x]
10

> product [1,2,3,4]
24

> product []
1

factorial :: Int -> Int
factorial n = product [1..n]
> factorial 4
24

Example uses of comprehensions

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

odds :: [Int] -> [Int]
odds xs = [x | x <- xs, odd x]

sumSqOdd :: [Int] -> Int
sumSqOdd xs = sum [x*x | x <- xs, odd x]

QuickCheck

-- sumSqOdd.hs

import Test.QuickCheck

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

odds :: [Int] -> [Int]
odds xs = [x | x <- xs, odd x]

sumSqOdd :: [Int] -> Int
sumSqOdd xs = sum [x*x | x <- xs, odd x]

prop_sumSqOdd :: [Int] -> Bool
prop_sumSqOdd xs = sum (squares (odds xs)) == sumSqOdd xs

Running QuickCheck

[melchior]dts: ghci sumSqOdd.hs
GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
> quickCheck prop_sumSqOdd
+++ OK, passed 100 tests.

