
Informatics 1
Introduction to Computation

Functional Programming
Lecture 3

Lists and Recursion

Don Sannella

Part I

Lists and Recursion

Cons and append

(:) :: a -> [a] -> [a] -- cons takes an element and a list
(++) :: [a] -> [a] -> [a] -- append takes two lists

1 : [2,3] = [1,2,3]
[1] ++ [2,3] = [1,2,3]
[1,2] ++ [3] = [1,2,3]
’l’ : "ist" = "list"
"l" ++ "ist" = "list"
"li" ++ "st" = "list"

[1,2] : 3 -- type error!
[1] : [2,3] -- type error!
1 ++ [2,3] -- type error!
[1,2] ++ 3 -- type error!
"l" : "ist" -- type error!
’l’ ++ "ist" -- type error!

(:) is pronounced cons, for construct
(++) is pronounced append

Lists

Every list can be written using only (:) and [].

[1,2,3] = 1 : (2 : (3 : []))

"list" = [’l’,’i’,’s’,’t’]
= ’l’ : (’i’ : (’s’ : (’t’ : [])))

A recursive definition: A list is either

• empty, written [], or

• constructed, written x:xs, with head x (an element), and tail xs (a list).

So every list matches exactly one of the following two patterns

[] -- only matches the empty list
(x : xs) -- matches any non-empty list

We can use any two distinct variables in the cons pattern

(head : tail) -- matches any non-empty list

Patterns

List patterns can be used in definitions <pattern> = <value>

myList = [0, 1, 2, 3, 4]
(x : xs) = myList
[a, b, c, d, e] = myList -- matches lists of length 5
[p, q, r] = myList -- matches lists of length 3

> (x : xs) = [0, 1, 2, 3, 4]
> x
0
> xs
[1, 2, 3, 4]
> [a, b, c, d, e] = [0, 1, 2, 3, 4]
> c
2
> [p, q, r] = [0, 1, 2, 3, 4]

*** Exception: ... -- pattern and value must match!

Recursion

A list is either

• empty, written [], or

• constructed, written x:xs, with head x (an element), and tail xs (a list).

“Brexit means Brexit.”
Theresa May

Recursion versus meaningless self-reference

A list is either

• empty, written [], or

• constructed, written x:xs, with head x (an element), and tail xs (a list).

“Brexit means Brexit.”
Theresa May

A list of numbers

> null [1,2]
False
> head [1,2]
1
> tail [1,2]
[2]
> null [2]
False
> head [2]
2
> tail [2]
[]
> null []
True

Part II

Mapping: Square every element of a list

Two styles of definition—squares

Comprehension

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

Recursion

squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

Pattern matching and conditionals

Pattern matching

squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

Conditionals with binding

squaresCond :: [Int] -> [Int]
squaresCond ws =

if null ws then
[]

else
let
x = head ws
xs = tail ws

in
x*x : squaresCond xs

How recursion works—squaresRec

squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))
=

[1,4,9]

QuickCheck

-- squares.hs
import Test.QuickCheck

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squaresRec :: [Int] -> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

prop_squares :: [Int] -> Bool
prop_squares xs = squares xs == squaresRec xs

[jitterbug]dts: ghci squares.hs
GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
> quickCheck prop_squares
+++ OK, passed 100 tests.

Part III

Filtering: Select odd elements from a list

Two styles of definition—odds

Comprehension

odds :: [Int] -> [Int]
odds xs = [x | x <- xs, odd x]

Recursion

oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

Pattern matching and conditionals
Pattern matching with guards

oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

Conditionals with binding
oddsCond :: [Int] -> [Int]
oddsCond ws =

if null ws then
[]

else
let
x = head ws
xs = tail ws

in
if odd x then

x : oddsCond xs
else

oddsCond xs

How recursion works—oddsRec

oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
=

1 : (3 : oddsRec [])
=

1 : (3 : [])
=

[1,3]

QuickCheck

-- odds.hs
import Test.QuickCheck

odds :: [Int] -> [Int]
odds xs = [x | x <- xs, odd x]

oddsRec :: [Int] -> [Int]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

prop_odds :: [Int] -> Bool
prop_odds xs = odds xs == oddsRec xs

[jitterbug]dts: ghci odds.hs
GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
> quickCheck prop_odds
+++ OK, passed 100 tests.

Part IV

Accumulation: Sum a list

Sum

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
=

1 + (2 + (3 + sum []))
=

1 + (2 + (3 + 0))
=

6

Product

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

product [1,2,3]
=

product (1 : (2 : (3 : [])))
=

1 * product (2 : (3 : []))
=

1 * (2 * product (3 : []))
=

1 * (2 * (3 * product []))
=

1 * (2 * (3 * 1))
=

6

Part V

Putting it all together:
Sum of the squares of the odd numbers in a list

Two styles of definition

Comprehension

sumSqOdd :: [Int] -> Int
sumSqOdd xs = sum [x*x | x <- xs, odd x]

Recursion

sumSqOddRec :: [Int] -> Int
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | odd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

How recursion works—sumSqOddRec

sumSqOddRec :: [Int] -> Int
sumSqOddRec [] = 0
sumSqOddRec (x:xs) | odd x = x*x + sumSqOddRec xs

| otherwise = sumSqOddRec xs

sumSqOddRec [1,2,3]
=

sumSqOddRec (1 : (2 : (3 : [])))
=

1*1 + sumSqOddRec (2 : (3 : []))
=

1*1 + sumSqOddRec (3 : [])
=

1*1 + (3*3 + sumSqOddRec [])
=

1*1 + (3*3 + 0)
=

1 + (9 + 0)
=

10

