Informatics 1
Introduction to Computation
Functional Programming

Lecture 3

[Lists and Recursion

Don Sannella

Part 1

[ists and Recursion

Cons and append

(:) o a —> [a] —> [a] —— cons takes an element and a 1list
(++) :: [a] -> [a] —-> [a] -- append takes two lists
1 : [2,3] = [1,2,3]

[1] ++ [2, 3] = [1,2,3]

[1,2] ++ [3] = [1,2,3]

717 M"ist" = "list"

"1" ++ "ist" = "list"

"1i" ++ "st" = "list"

[1,2] : 3 —— type error!

(11 : [2, 3] —-— type error!

1 ++ [2, 3] —— type error!

[1,2] ++ 3 —— type error!

"1 o M"ist" —— type error!

717 ++ "ist" —— type error!

(:) 1s pronounced cons, for construct

(++) 1is pronounced append

Lists

Every list can be written using only (:) and [].

[1,2,3] = 1 : (2 : (3 : []))

"lj_St" — [IlI,IiI ,S,,,t,]
(

A recursive definition: A list 1s either
e empty, written [], or
e constructed, written x : xs, with head x (an element), and fail xs (a list).

So every list matches exactly one of the following two patterns

[] —— only matches the empty list
(X ¢ xXs) —— matches any non-empty list

We can use any two distinct variables in the cons pattern

(head : tail) —— matches any non-empty list

Patterns

List patterns can be used in definitions <pattern> = <value>
myList = [0, 1, 2, 3, 4]
(X : X8) = myList
[a, b, ¢, d, e] = myList —— matches lists of length 5
[p, 9, T] = myList —— matches lists of length 3
> (X xs) = [0, 1, 2, 3, 4]
> X
0
> XS
[1, 2, 3, 4]
> [l a, b, ¢, d, e 1 =160, 1, 2, 3, 4]
> C
2
> [p, 9, r 1 =160, 1, 2, 3, 4]
x*x* Exception: ... —— pattern and value must match!

Recursion

A [ist 1s either
e empty, written [], or

e constructed, written x : xs, with head x (an element), and tail xs (a list).

Recursion versus meaningless selt-reference

A [ist 1s either
e empty, written [], or

e constructed, written x : xs, with head x (an element), and tail xs (a list).

“Brexit means Brexit.”
Theresa May

A list of numbers

> null [1,2]

False

> head [1, 2]
1

> tail [1,2]
[2]

> null [2]
False

> head [2]

2

> tail [2]
[]

> null []

True

Part 11

Mapping: Square every element of a list

Two styles of definition—squares

Comprehension

squares :: [Int] —-> [Int]
squares Xs = [X*xX | X <= Xs]

Recursion

squaresRec :: [Int] —-> [Int]
squaresRec [] =[]
squaresRec (x:xs) = X*xX : squaresRec xs

Pattern matching and conditionals

Pattern matching

squaresRec :: [Int] —> [Int]
squaresRec [] = []
squaresRec (x:xs) = x*xX : squaresRec xs

Conditionals with binding

squaresCond :: [Int] —-> [Int]
squaresCond ws =
1f null ws then

[]

else
let
X = head ws
Xs = tail ws
in

X*X : squaresCond xs

How recursion works—squaresRec

squaresRec :: [Int] —-> [Int]
squaresRec [] = []
squaresRec (x:xS) = X*X : squaresRec xs

squaresRec [1,2, 3]

squaresRec (1 : (2 : (3 : [])))

1«1 : squaresRec (2 : (3 : [1))

1«1 : (2%2 : squaresRec (3 : [1))
1x1 : (2%2 : (3%3 : squaresRec []))
1x1 @ (2%2 : (3%x3 : [1))

1 (4 (9 : [1))

[1,4,9]

QuickCheck

—— squares.hs
import Test.QuickCheck

squares :: [Int] —-> [Int]

squares xs = [x*x | x <— xs]

squaresRec :: [Int] —-> [Int]

squaresRec [] =[]

squaresRec (x:x5) = X*X : squaresRec xs
prop_squares :: [Int] —> Bool

prop_squares xs = squares Xs == squaresRec xs

[Jitterbugl]dts: ghci squares.hs

GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
> quickCheck prop_squares

+++ OK, passed 100 tests.

Part 111

Filtering: Select odd elements from a list

Two styles of definition—odds

Comprehension
odds :: [Int] —-> [Int]
odds xs = [x | X <= xs, odd x]
Recursion
oddsRec :: [Int] —-> [Int]
oddsRec [] =[]
oddsRec (x:xs) | odd x = X : oddsRec xs

| otherwise = oddsRec xs

Pattern matching and conditionals

Pattern matching with guards

oddsRec :: [Int] —-> [Int]
oddsRec []
oddsRec (x:xs) | odd x

| otherwise

Conditionals with binding

oddsCond :: [Int] —-> [Int]
oddsCond ws =
1f null ws then
[]
else
let
X = head ws
Xs = tail ws
in
1f odd x then
X : oddsCond xs
else
oddsCond xs

[]

X : oddsRec xs
oddsRec xs

How recursion works—oddsRec

oddsRec :: [Int] —> [Int]

oddsRec [] = []

oddsRec (x:xs) | odd x = X : oddsRec xs
| otherwise = oddsRec xs

oddsRec [1,2,3]

oddsRec (1 : (2 : (3 =: []1)))

1 : oddsRec (2 : (3 : []))

1 : oddsRec (3 : [])

1 : (3 : oddsRec [])

1 : (3 : [])

[1,3]

QuickCheck

—— odds.hs
import Test.QuickCheck

odds :: [Int] -> [Int]

odds xs = [X | X <= xs, odd x]

oddsRec :: [Int] —-> [Int]

oddsRec [] = []

oddsRec (x:xs) | odd x = X : oddsRec xs
| otherwise = oddsRec xs

prop_odds :: [Int] —-> Bool

prop_odds xs = odds xs == oddsRec xs

[Jitterbugldts: ghci odds.hs

GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
> quickCheck prop_odds

+++ OK, passed 100 tests.

Part IV

Accumulation: Sum a list

Sum

sum <3

Sum
Sum

[Int] —-> Int
[] = 0
(X:xX83) = X 4+ sum XS

sum [1,2, 3]

Product

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

product [1,2,3]

product (1 : (2 : (3 : [1)))

1 %= product (2 : (3 : []))

1 * (2 % product (3 : []))

1 x (2 * (3 * product []))

1« (2 » (3 = 1))

Part V

Putting 1t all together:

Sum of the squares of the odd numbers 1n a list

Two styles of definition

Comprehension
sumSqgOdd
sumSgOdd xs

Recursion

sumSqgOddRec
sumSgOddRec
sumSqgOddRec

[Int] —> Int

= Sum

[

X*¥xX | X <—= xs, odd x]
—> Int
0
odd x x*x + sumSgOddRec xs
otherwise sumSgOddRec xs

How recursion works—sumSqgOddRec

sumSgOddRec :: [Int] —> Int

sumSgOddRec [] = 0

sumSgOddRec (x:xs) | odd x = x*xx + sumSgOddRec xs
| otherwise = sumSgOddRec xs

sumSgOddRec [1, 2, 3]

sumSgOddRec (1 : (2 : (3 : [1)))
1x1 + sumSgOddRec (2 : (3 : []))
1x1 + sumSgOddRec (3 : [])

1«1 + (3x3 + sumSgOddRec [])

1«1 + (3%x3 + 0)

1 + (9 + 0)

10

