Informatics 1
 Functional Programming Lecture 4

More fun with recursion

Don Sannella
University of Edinburgh

Part I

Counting

Counting

$>$ [1..3]
$[1,2,3]$
> enumFromTo 13
$[1,2,3]$
[m..n] stands for enumFromTo m n

Recursion

```
enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []
    | m <= n = m : enumFromTo (m+1) n
```


How enumFromTo works (recursion)

```
enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []
    | m <= n = m : enumFromTo (m+1) n
    enumFromTo 1 3
=
    1 : enumFromTo 2 3
=
    1 : (2 : enumFromTo 3 3)
=
    1 : (2 : (3 : enumFromTo 4 3))
=
    1 : (2 : (3 : [] ) )
=
    [1,2,3]
```


Factorial

```
> factorial 3
```

Library functions

```
factorial :: Int -> Int
factorial n = product [1..n]
```

Recursion

```
factorialRec :: Int -> Int
factorialRec n = fact 1 n
    where
    fact :: Int -> Int -> Int
    fact m n | m > n = 1
        | m <= n = m * fact (m+1) n
```


How factorial works (recursion)

```
factorialRec :: Int -> Int
factorialRec n = fact 1 n
    where
    fact :: Int -> Int -> Int
    fact m n | m > n = = 
        | m<= n = m* fact (m+1) n
    factorialRec 3
=
        fact 1 3
=
    1 * fact 2 3
=
    1 * (2 * fact 3 3)
=
    1*(2* (3* fact 4 3))
=
    1 * (2 * (3 * 1))
=
    6
```


Counting forever!

```
> [0..]
[0,1,2,3,4,5,...
> enumFrom 0
[0,1,2,3,4,5,...
```

[m..] stands for enumFrom m

Recursion

```
enumFrom :: Int -> [Int]
enumFrom m = m : enumFrom (m+1)
```


How enumFrom works (recursion)

```
enumFrom :: Int -> [Int]
enumFrom m = m : enumFrom (m+1)
    enumFrom 0
=
    0 : enumFrom 1
=
    0 : (1 : enumFrom 2)
=
    0 : (1 : (2 : enumFrom 3))
=
=
    [0,1,2,... -- computation goes on forever!
```


Part II

Zip and search

Zip

$$
\begin{aligned}
& \text { zip :: [a] -> [b] -> [(a,b)] } \\
& \text { zip [] ys = [] } \\
& \text { zip xs [] = [] } \\
& \text { zip (x:xs) (y:ys) = (x,y) : zip xs ys } \\
& \text { zip }[0,1,2] \text { "abc" } \\
& = \\
& \text { (0,'a') : zip [1,2]"bc" } \\
& \text { = } \\
& \text { (0,'a') : ((1,'b') : zip [2] "c") } \\
& \text { = } \\
& \left(0, a^{\prime}\right):\left(\left(1, b^{\prime}\right):\left(\left(2, c^{\prime}\right): \operatorname{zip}[] \quad " "\right)\right. \\
& = \\
& \left(0,{ }^{\prime} a^{\prime}\right):\left(\left(1, b^{\prime}\right):\left(\left(2, c^{\prime}\right):[]\right)\right. \\
& = \\
& {\left[\left(0, a^{\prime}\right),\left(1, b^{\prime}\right),\left(2,^{\prime} c^{\prime}\right)\right]}
\end{aligned}
$$

Two alternative definitions of zip

Laid back

$$
\begin{array}{rlrl}
\operatorname{zip}::[a]->[b] & -> & {[(a, b)]} \\
& =[] \\
\operatorname{zip}[] \text { ys } & & =[] \\
\operatorname{zip} \text { xs }[] & & \\
\text { zip }(x: x s)(y: y s) & =(x, y): \text { zip xs ys }
\end{array}
$$

Uptight

```
zipHarsh :: [a] -> [b] -> [(a,b)]
zipHarsh [] [] = []
zipHarsh (x:xs) (y:ys) = (x,y) : zipHarsh xs ys
```


Zip with lists of different lengths

```
> zip [0,1,2] "abc"
[(0,' a'),(1,' b') , (2,' c')]
> zipHarsh [0,1,2] "abc"
[(0,'a'),(1,'b'),(2,'c')]
> zip [0,1,2] "abcde"
[(0,'a'),(1,' b') , (2,'c')]
> zipHarsh [0,1,2] "abcde"
[(0,'a'), (1,'b') , (2,'c') *** Exception:
Non-exhaustive patterns in function zipHarsh
> zip [0,1,2,3,4] "abc"
[(0,' a'), (1,'b') , (2,' c') ]
> zipHarsh [0,1,2,3,4] "abc"
[(0,' a'), (1,' b' ), (2,' c') *** Exception:
Non-exhaustive patterns in function zipHarsh
```


More fun with zip

```
> zip [0..] "word"
[(0,' w'),(1,' O'),(2,'r'),(3,' d')]
pairs :: [a] -> [(a,a)]
pairs xs = zip xs (tail xs)
> pairs "word"
[('W',''O'),('O','r'), ('r',' d')]
```

Zip with an infinite list

$$
\begin{aligned}
& \text { zip :: [a] -> [b] -> [(a,b)] } \\
& \text { zip [] ys }=\text { [] } \\
& \text { zip xs [] }=\text { [] } \\
& \text { zip (x:xs) (y:ys) }=(x, y) \text { : zip xs ys } \\
& \text { zip [0..] "abc" } \\
& \text { = (0,'a') : zip [1..] "bc" } \\
& =\left(0,{ }^{\prime} a^{\prime}\right):\left(\left(1, \prime^{\prime} b^{\prime}\right): \operatorname{zip}[2 \ldots] " C "\right)^{\prime} \\
& =\left(0, a^{\prime}\right):\left(\left(1, b^{\prime}\right):\left(\left(2,^{\prime} c^{\prime}\right): \operatorname{zip}[3 . .] \quad " "\right)\right) \\
& =\left(0, \prime a^{\prime}\right):\left(\left(1,{ }^{\prime} b^{\prime}\right):\left(\left(2,^{\prime} c^{\prime}\right): \operatorname{zip}(3:[4 . .]) \quad " "\right)\right) \\
& =\left(0, a^{\prime}\right):\left(\left(1,{ }^{\prime} b^{\prime}\right):\left(\left(2,^{\prime} c^{\prime}\right):[]\right)\right) \\
& =\left[\left(0, \prime a^{\prime}\right),\left(1, b^{\prime}\right),\left(2,^{\prime} c^{\prime}\right)\right]
\end{aligned}
$$

Computer can determine (3: [4..]) $\neq[]$ without computing [4..].

Dot product of two lists

Comprehensions and library functions

```
dot :: Num a => [a] -> [a] -> a
dot xs ys = sum [ x*y | (x,y) <- zipHarsh xs ys ]
```

Recursion

```
dotRec :: Num a => [a] -> [a] -> a
dotRec [] [] = 0
dotRec (x:xs) (y:ys) = x*y + dotRec xs ys
```

How dot product works (comprehension)

```
dot :: Num a => [a] -> [a] -> a
dot xs ys = sum [ x*y | (x,y) <- zip xs ys ]
    dot [2,3,4] [5,6,7]
=
    sum [ x*y | (x,y) <- zip [2,3,4] [5,6,7] ]
=
sum [ x*y | (x,y)<- [(2,5),(3,6), (4,7)] ]
=
sum [ 2*5, 3*6, 4*7]
=
    sum [ 10, 18, 28]
=
    56
```


How dot product works (recursion)

```
dotRec :: Num a => [a] -> [a] -> a
dotRec [] [] = 0
dotRec (x:xs) (y:ys) = x*y + dotRec xs ys
    dotRec [2,3,4] [5,6,7]
=
    dotRec (2:(3:(4:[]))) (5:(6:(7:[])))
=
    2*5 + dotRec (3:(4:[])) (6:(7:[]))
=
    2*5+(3*6+\operatorname{dotRec}(4:[]) (7:[]))
=
    2*5 + (3*6 + (4*7 + dotRec [] []))
=
    2*5+(3*6+(4*7+0))
=
    10+(18+(28+0))
=
    5 6
```


Search

```
> search "bookshop" 'o'
[1,2,6]
```

Comprehensions and library functions

```
search :: Eq a => [a] -> a -> [Int]
search xs y = [ i | (i,x) <- zip [0..] xs, x==y ]
```


Recursion

```
searchRec :: Eq a => [a] -> a -> [Int]
searchRec xs y = srch xs y 0
where
srch :: Eq a => [a] -> a -> Int -> [Int]
srch [] y i = []
srch (x:xs) y i
    | x == y = i : srch xs y (i+1)
    | otherwise = srch xs y (i+1)
```


How search works (comprehension)

```
search :: Eq a => [a] -> a -> [Int]
search xs y = [ i | (i,x) <- zip [0..] xs, x==y ]
    search "book" 'o'
=
    [ i | (i,x) <- zip [0..] "book", x==' O' ]
=
    [ i | (i,x) <- [(0,' b' ), (1,'O'), (2,'O'),(3,'k')], x=='O' ]
=
```



```
=
    []++[1]++[2]++[]
=
    [1,2]
```


How search works (recursion)

```
searchRec xs y = srch xs y 0
    where
    srch [] y i = []
    srch (x:xs) y i | x == y = i : srch xs y (i+1)
        | otherwise = srch xs y (i+1)
    searchRec "book" 'o'
=
    srch "book" 'o' 0
=
    srch "ook" 'o' 1
=
    1 : srch "ok" 'o'
        2
=
    1 : (2 : srch "k" 'o' 3)
=
    1 : (2 : srch "" 'o' 4)
=
    1 : (2 : [])
=
    [1,2]
```

