Informatics 1

Functional Programming Lecture 4

More fun with recursion

Don Sannella

University of Edinburgh

Part 1

Counting

Counting

> [1..3]

[1,2, 3]

> enumFromTo 1 3
[1,2, 3]

[m..n] stands for enumFromTo m n

Recursion
enumFromTo :: Int —-> Int —-> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1l) n

How enumFromTo works (recursion)

enumFromTo :: Int —-> Int —-> [Int]
enumfFromTo m n | m > n = []
| m <= n = m : enumFromTo (m+1l) n

enumFromTo 1 3

1 : enumFromTo 2 3
i 1 : (2 : enumFromTo 3 3)
: 1 = (2 : (3 : enumFromTo 4 3))
_1 (2 (3 = [1))

Factorial

> factorial 3

Library functions

factorial :: Int —-> Int
factorial n = product [1..n]
Recursion
factorialRec :: Int —> Int
factorialRec n = fact 1 n
where
fact :: Int —> Int —-> Int
fact mn | m > n = 1

| m <= n = m % fact (m+l) n

How factorial works (recursion)

factorialRec :: Int —> Int
factorialRec n = fact 1 n
where
fact :: Int —> Int —-> Int
fact mn | m > n = 1
| m <= n = m = fact (m+tl) n
factorialRec 3
fact 1 3
1 = fact 2 3
1 (2 = fact 3 3)
1 » (2 = (3 = fact 4 3))

1 x (2 « (3 = 1))

Counting forever!

> [0..]
[0,1,2,3,4,5, ...
> enumFrom O
(0,1,2,3,4,5, ...

[m..] stands for enumFrom m
Recursion
enumfFrom :: Int —-> [Int]

enumFrom m = m : enumFrom (m+1)

How enumFrom works (recursion)

enumFrom :: Int —-> [Int]
enumFrom m = m : enumFrom (m+1)

enumFrom O

O : enumFrom 1
O : (1 : enumFrom 2)
O : (1 : (2 : enumFrom 3))

[(0,1,2, ... —— computation goes on forever!

Part 11

Z1p and search

Z1p

zip :: [a]l] —-> [b] -> [(a,b)]
zip [] ys =[]
zip xs [] =[]
zip (x:xs) (y:ys) = (

zlp [0,1,2] "abc"

(0,7a’) : zip [1,2]"bc"

(0,7a”") « ((1,"b") : zip [2]

(0,7a") « ((1,"b") =+ ((2,"c")

(0,7a") « ((1,"b") =+ ((2,"c")

[(0, 7a"), (1,"b"), (2,7c")]

"C")

X,y) : Z1lp XS VyS

Two alternative definitions of zip

Laid back

zip :: [a] —> [b] —> [(
zip [] ys = [
zip xs [] = [
zlp (x:xs) (y:ys) =

Uptight

zipHarsh :: [a] —-> [b] —> [(a,b)]
zipHarsh [] [] =[]
zipHarsh (x:xs) (y:ys) = (xX,y) : zipHarsh xs ys

Z1p with lists of different lengths

> zip [0,1,2] "abc"
[(0, "a"), (1,"b"), (2,"c")]

> zipHarsh [0,1,2] "abc"
[(0,"a"), (1,"b"), (2,"c")]

> zip [0,1,2] "abcde"
[(0,"a"), (1,"b"), (2,7c")]

> zipHarsh [0,1,2] "abcde"
[(O,"a’), (1,"b"), (2,"c’)x*x* Exception:
Non—exhaustive patterns in function zipHarsh

> zip [0,1,2,3,4] "abc"
[(0, 7a"), (1,"b"), (2,7c")]

> zipHarsh [0,1,2,3,4] "abc"
[(O,"a’), (1,"b"), (2,"c’)x*x+ Exception:
Non—-exhaustive patterns in function zipHarsh

More fun with zip

> zip [0..] "word"
[0, "w"), (1,70"),(2,"x"), (3,7d")]

pairs :: [a] —> [(a,a)]

pairs xs = zip xs (tail xs)

> pairs "word"
[("w","0"), ("o, "), ("x","d")]

Z1p with an infinite list

zip :: [a]l] —-> [b] -> [(a,b)]

zip [] ys =[]

zip xs [] =[]

zilp (x:xs) (y:ys) = (xX,y) : zZlp XS yS

zlp [0..] "abc"

(0,7a’") : zip [1..] "bc"

(0,7a’") = ((1,"b") : zip [2..] "c")

(0,7a”) + ((L,"b") + ((2,'c") : zip [3..] ""))
(0,7a") « ((1,'b") =+ ((2,'c") : zip (3 : [4..]) ""))
(0,7a”) + ((L,"b") + ((2,7c") =+ [1))

[(0, 7a"), (1,"b"), (2,7c")]

Computer can determine (3 : [4..]) # [] without computing [4..].

Dot product of two lists

Comprehensions and library functions

dot
dot xs

Recursion

dotRec ::

dotRec
dotRec

ys =

:: Num a => [a] —>

sum [X*xVy

[a] —> a

(x,y) <— zipHarsh xs ys

]

How dot product works (comprehension)

dot :: Num a => [a] -> [a] —-> a
dot xs ys = sum [x*xy | (xX,y) <— z1p Xs yS |

dot [2,3,4] [5,6,7]

sum [x*y | (x,y) <- zip [2,3,4] [5,6,7]]
sum [xxy | (x,y) <= [(2,5), (3,0), (4,7)] 1]
sum [2%5, 3x6, 4x7]

sum [10, 18, 28]

56

How dot product works (recursion)

dotRec :: Num a => [a] —-> [a] —> a
dotRec [] [] = 0
dotRec (x:xs) (y:ys) = xxy + dotRec xs ys

dotRec [2,3,4] [5,6,7]

dotRec (2:(3:(4:[]))) (5:(6:(7:11)))

2x5 + dotRec (3:(4:[1)) (6:(7:11))

2x5 + (3%x6 + dotRec (4:[]) (7:[1]))

2x5 + (3x6 + (4x7 + dotRec [] [1))

2x5 + (3x6 + (4%x7 + 0))

10 + (18 + (28 + 0))

56

Search

> search "bookshop" ’of
[1,2,6]

Comprehensions and library functions

search :: Egq a => [a] —> a —> [Int]
search xs v = [1 | (i,x) <= zip [0..] xs, x==y
Recursion
searchRec :: Eqg a => [a] -> a —> [Int]
searchRec xs y = srch xs y O
where
srch :: Eg a => [a] —-> a -> Int -> [Int]
srch [] y 1 =[]

srch (x:xs) y 1
| x == vy = 1 : srch xs y (1+1)
| otherwise = srch xs y (1+1)

How search works (comprehension)

search :: Egq a => [a] —> a —> [Int]
search xs y = [1 | (i,x) <- zip [0..] xs, x==y]

search "book" ’of

[i | (i,x) <= zip [0..] "book", x=="0o"]

[1 | (1,%x) <= [(0,"b"),(1,"0"),(2,"0"),(3,"k")], x=="0"]
[0 "b'=="0"]++[1|"0'=="0"]++[2|"0'=="0"]++[3|"k'=="0"]
[J++[1]++[2]++[]

[1,2]

How search works (recursion)

searchRec xs y = srch xs y 0
where
srch [] y 1 =[]
srch (x:xs) y 1 | x ==y = 1 : srch xs y (1+1)
| otherwise = srch xs y (i+1)

searchRec "book" 7o’

srch "book" "o’ 0

srch "ook" "o’ 1

1 : srch "ok"™ o' 2
: 1 : (2 : srch "k" o' 3)
) 1 : (2 : sxrch "" "o’ 4)
_l: (2 = [])

[1,2]

