
Informatics 1
Functional Programming Lecture 4

More fun with recursion

Don Sannella
University of Edinburgh

Part I

Counting

Counting

> [1..3]
[1,2,3]
> enumFromTo 1 3
[1,2,3]

[m..n] stands for enumFromTo m n

Recursion

enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1) n

How enumFromTo works (recursion)

enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1) n

enumFromTo 1 3
=

1 : enumFromTo 2 3
=

1 : (2 : enumFromTo 3 3)
=

1 : (2 : (3 : enumFromTo 4 3))
=

1 : (2 : (3 : []))
=

[1,2,3]

Factorial

> factorial 3

Library functions

factorial :: Int -> Int
factorial n = product [1..n]

Recursion

factorialRec :: Int -> Int
factorialRec n = fact 1 n

where
fact :: Int -> Int -> Int
fact m n | m > n = 1

| m <= n = m * fact (m+1) n

How factorial works (recursion)
factorialRec :: Int -> Int
factorialRec n = fact 1 n

where
fact :: Int -> Int -> Int
fact m n | m > n = 1

| m <= n = m * fact (m+1) n

factorialRec 3
=

fact 1 3
=

1 * fact 2 3
=

1 * (2 * fact 3 3)
=

1 * (2 * (3 * fact 4 3))
=

1 * (2 * (3 * 1))
=

6

Counting forever!

> [0..]
[0,1,2,3,4,5,...
> enumFrom 0
[0,1,2,3,4,5,...

[m..] stands for enumFrom m

Recursion

enumFrom :: Int -> [Int]
enumFrom m = m : enumFrom (m+1)

How enumFrom works (recursion)

enumFrom :: Int -> [Int]
enumFrom m = m : enumFrom (m+1)

enumFrom 0
=

0 : enumFrom 1
=

0 : (1 : enumFrom 2)
=

0 : (1 : (2 : enumFrom 3))
=

...
=

[0,1,2,... -- computation goes on forever!

Part II

Zip and search

Zip

zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip [0,1,2] "abc"
=

(0,’a’) : zip [1,2]"bc"
=

(0,’a’) : ((1,’b’) : zip [2] "c")
=

(0,’a’) : ((1,’b’) : ((2,’c’) : zip [] ""))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : []))
=

[(0,’a’),(1,’b’),(2,’c’)]

Two alternative definitions of zip

Laid back

zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Uptight

zipHarsh :: [a] -> [b] -> [(a,b)]
zipHarsh [] [] = []
zipHarsh (x:xs) (y:ys) = (x,y) : zipHarsh xs ys

Zip with lists of different lengths

> zip [0,1,2] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

> zipHarsh [0,1,2] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

> zip [0,1,2] "abcde"
[(0,’a’),(1,’b’),(2,’c’)]

> zipHarsh [0,1,2] "abcde"
[(0,’a’),(1,’b’),(2,’c’)*** Exception:
Non-exhaustive patterns in function zipHarsh

> zip [0,1,2,3,4] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

> zipHarsh [0,1,2,3,4] "abc"
[(0,’a’),(1,’b’),(2,’c’)*** Exception:
Non-exhaustive patterns in function zipHarsh

More fun with zip

> zip [0..] "word"
[(0,’w’),(1,’o’),(2,’r’),(3,’d’)]

pairs :: [a] -> [(a,a)]
pairs xs = zip xs (tail xs)
> pairs "word"
[(’w’,’o’),(’o’,’r’),(’r’,’d’)]

Zip with an infinite list

zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip [0..] "abc"
=

(0,’a’) : zip [1..] "bc"
=

(0,’a’) : ((1,’b’) : zip [2..] "c")
=

(0,’a’) : ((1,’b’) : ((2,’c’) : zip [3..] ""))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : zip (3 : [4..]) ""))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : []))
=

[(0,’a’),(1,’b’),(2,’c’)]

Computer can determine (3 : [4..]) 6= [] without computing [4..].

Dot product of two lists

Comprehensions and library functions

dot :: Num a => [a] -> [a] -> a
dot xs ys = sum [x*y | (x,y) <- zipHarsh xs ys]

Recursion

dotRec :: Num a => [a] -> [a] -> a
dotRec [] [] = 0
dotRec (x:xs) (y:ys) = x*y + dotRec xs ys

How dot product works (comprehension)

dot :: Num a => [a] -> [a] -> a
dot xs ys = sum [x*y | (x,y) <- zip xs ys]

dot [2,3,4] [5,6,7]
=

sum [x*y | (x,y) <- zip [2,3,4] [5,6,7]]
=

sum [x*y | (x,y) <- [(2,5), (3,6), (4,7)]]
=

sum [2*5, 3*6, 4*7]
=

sum [10, 18, 28]
=

56

How dot product works (recursion)

dotRec :: Num a => [a] -> [a] -> a
dotRec [] [] = 0
dotRec (x:xs) (y:ys) = x*y + dotRec xs ys

dotRec [2,3,4] [5,6,7]
=

dotRec (2:(3:(4:[]))) (5:(6:(7:[])))
=

2*5 + dotRec (3:(4:[])) (6:(7:[]))
=

2*5 + (3*6 + dotRec (4:[]) (7:[]))
=

2*5 + (3*6 + (4*7 + dotRec [] []))
=

2*5 + (3*6 + (4*7 + 0))
=

10 + (18 + (28 + 0))
=

56

Search

> search "bookshop" ’o’
[1,2,6]

Comprehensions and library functions

search :: Eq a => [a] -> a -> [Int]
search xs y = [i | (i,x) <- zip [0..] xs, x==y]

Recursion

searchRec :: Eq a => [a] -> a -> [Int]
searchRec xs y = srch xs y 0

where
srch :: Eq a => [a] -> a -> Int -> [Int]
srch [] y i = []
srch (x:xs) y i

| x == y = i : srch xs y (i+1)
| otherwise = srch xs y (i+1)

How search works (comprehension)

search :: Eq a => [a] -> a -> [Int]
search xs y = [i | (i,x) <- zip [0..] xs, x==y]

search "book" ’o’
=

[i | (i,x) <- zip [0..] "book", x==’o’]
=

[i | (i,x) <- [(0,’b’),(1,’o’),(2,’o’),(3,’k’)], x==’o’]
=

[0|’b’==’o’]++[1|’o’==’o’]++[2|’o’==’o’]++[3|’k’==’o’]
=

[]++[1]++[2]++[]
=

[1,2]

How search works (recursion)

searchRec xs y = srch xs y 0
where
srch [] y i = []
srch (x:xs) y i | x == y = i : srch xs y (i+1)

| otherwise = srch xs y (i+1)

searchRec "book" ’o’
=

srch "book" ’o’ 0
=

srch "ook" ’o’ 1
=

1 : srch "ok" ’o’ 2
=

1 : (2 : srch "k" ’o’ 3)
=

1 : (2 : srch "" ’o’ 4)
=

1 : (2 : [])
=

[1,2]

