Informatics 1

Functional Programming Lecture 5

Select, Take, Drop

Don Sannella

University of Edinburgh

Part 1

Select, take, and drop

Select, take, and drop

> "words" !'! 3
Idl

> take 3 "words"
"WO]C"

> drop 3 "words"
w dS "

selectComp :: [a] —-> Int —> a
selectComp xs 1 = the [x |
where
the [x] = X
takeComp :: Int —-> [a] —> [a]
takeComp 1 xs = [x | (3,x%)
dropComp :: Int —> [a] —> [a]
dropComp i1 xs = [x | (3,%)

—— (!
(J,x)

<- zip
<- zip

Select, take, and drop (comprehensions)

)

<—- zi1p

[0..]

[O..

XS,

XS,

] xs,

j < i

j >= 1

J == 1

How take works (comprehension)

takeComp :: Int —-> [a] —> [a]
takeComp 1 xs = [x | (3,x) <= zip [0..] xs, J < 1]

takeComp 3 "words"
[x | (3,%x) <= zip [0..] "words", j < 3]

[x | (J,x) <= [(0,"w"),(1,"0"),(2,""), (3,"d"), (4,"s")],

["w! |0<3]++["0" |1<3]++["r’ |2<3]++["d" |3<3]++[" s’ |4<3]
["w/]++["o" 1 ++[" " J++[]++[]

"WOI"

Lists

Every list can be written using only (:) and [].

[1,2,3] = 1 : (2 : (3 : []))

"list" — ['l','i','S','t']
— r1r . (/j_r . (’S’ . (/t/ . [])))

A recursive definition: A list 1s either
e null, written [], or

e constructed, written x : xs,

with head x (an element), and tail xs (a list).

Natural numbers

Every natural number can be written using only (+1) and O.

3 = ((0O + 1) + 1) + 1
A recursive definition: A natural number 1s either
e zero, written O, or

® successor, written n+1

with predecessor n (a natural number).

Select, take, and drop (recursion)

(') ::: [a] => Int -> a

(x:xs) ' 0 = X

(x:xs) !'l''1 = xs !'! (i-1)

take :: Int —> [a] —-> [a]

take 0 xs = []

take 1 [] = []

take 1 (x:xs) = x : take (i-1) xs
drop :: Int -> [a] —-> [a]

drop 0 xs = Xs

drop i [] =]

drop 1 (x:xs) = drop (1-1) xs

Pattern matching and conditionals (squares)

Pattern matching

squares :: [Int] —-> [Int]
squares [] =[]
squares (xX:xXxs) = X*xX : sguares XS

Conditionals with binding

squares :: [Int] —-> [Int]
squares ws =
1f null ws then

[]

else
let

X = head ws

Xs = tail ws
in

X*X ¢ Sguares XS

Pattern matching and conditionals (take)

Pattern matching

take :: Int —-> [a] —-—> [a]

take 0 xs = []

take 1 [] =[]

take 1 (x:x8) = x : take (i1-1) xs

Conditionals with binding

take :: Int —> [a] —-> [a]
take 1 ws
if 1 == | | null ws then
[]
else
let
X = head ws
xs = talil ws
in

X : take (1-1) xs

Pattern matching and guards (take)

Pattern matching

take :: Int —-> [a] —-—> [a]

take 0 xs = []

take 1 [] =[]

take 1 (x:x8) = x : take (1i-1) xs
Guards

take :: Int —> [a] —> [a]

take 0 xs = []

take 1 [] = []

take 1 (x:xs) | 1 > 0 = x : take

(1-1)

XS

How take works (recursion)

take :: Int -> [a] -> [a]

take 0 xs = []

take 1 [] =[]

take 1 (x:xs) = x : take (i-1) xs

take 3 "words"

"w’ : take 2 "ords"
) "w' o ("o’ : take 1 "rds")
) "w' o (o' ¢ ('r" : take 0 "ds"))
} ' w’ ("o ("r’ [1))

The infinite case

take :: Int -> [a] -> [a]

take 0 xs = []

take 1 [] = []

take 1 (x:xs) = x : take (i-1) xs

takeComp :: Int —-> [a] —> [a]

takeComp 1 xs = [x | (3,x) <= zip [0..] xs, J < i

> take 3 [10..]
[10,11,12]

> takeComp 3 [10..]
[10,11,12 —— computation goes on forever!

The 1nfinite case explained

Function t akeComp is equivalent to takeCompRec.

takeCompRec :: Int —-> [a] —> [a]
takeCompRec 1 xs = helper 0 1 xs
where
helper J 1 [] = []
helper jJ 1 (x:xs) | J < 1 = X : helper (3J+1) 1 xs
| otherwise = Thelper (j+1) 1 xs

takeCompRec 3 [10..]

helper 0 3 [10..]

10 : helper 1 3 [11..]

10 : (11 : helper 2 3 [12..])

10 ¢ (11 : (12 : helper 3 3 [13..1))

10 ¢ (11 : (12 : helper 4 3 [14..]))

Part 11

Arithmetic

Arithmetic (recursion)

(+) Int -> Int -> Int
m+ 0 = m

m + = (m+ (n-1)) + 1
(x) Int —> Int —> Int
m 0 = 0

m = = (m » (n-1)) + m

(") :: Int —-> Int —-> Int
m -~ 0 = 1
m n = (m = (n=-1)) * m

How arithmetic works (recursion)

+ Int —> Int —-> Int

(+)
m+ 0 = m
m + n = (m + (n—-1)) + 1
2 + 3
(2 + 2) + 1
((2 + 1) + 1) + 1
(((2 + 0) + 1) + 1) + 1

((2z + 1) + 1) + 1

Giuseppe Peano (1858-1932)

The definition of the natural numbers 1s named the Peano axioms in his honour.

Made key contributions to the modern treatment of mathematical induction.

