
Informatics 1
Functional Programming Lecture 5

Select, Take, Drop

Don Sannella
University of Edinburgh

Part I

Select, take, and drop

Select, take, and drop

> "words" !! 3
’d’

> take 3 "words"
"wor"

> drop 3 "words"
"ds"

Select, take, and drop (comprehensions)

selectComp :: [a] -> Int -> a -- (!!)
selectComp xs i = the [x | (j,x) <- zip [0..] xs, j == i]

where
the [x] = x

takeComp :: Int -> [a] -> [a]
takeComp i xs = [x | (j,x) <- zip [0..] xs, j < i]

dropComp :: Int -> [a] -> [a]
dropComp i xs = [x | (j,x) <- zip [0..] xs, j >= i]

How take works (comprehension)

takeComp :: Int -> [a] -> [a]
takeComp i xs = [x | (j,x) <- zip [0..] xs, j < i]

takeComp 3 "words"
=

[x | (j,x) <- zip [0..] "words", j < 3]
=

[x | (j,x) <- [(0,’w’),(1,’o’),(2,’r’),(3,’d’),(4,’s’)],
j < 3]

=
[’w’|0<3]++[’o’|1<3]++[’r’|2<3]++[’d’|3<3]++[’s’|4<3]

=
[’w’]++[’o’]++[’r’]++[]++[]

=
"wor"

Lists

Every list can be written using only (:) and [].

[1,2,3] = 1 : (2 : (3 : []))

"list" = [’l’,’i’,’s’,’t’]
= ’l’ : (’i’ : (’s’ : (’t’ : [])))

A recursive definition: A list is either

• null, written [], or

• constructed, written x:xs,
with head x (an element), and tail xs (a list).

Natural numbers

Every natural number can be written using only (+1) and 0.

3 = ((0 + 1) + 1) + 1

A recursive definition: A natural number is either

• zero, written 0, or

• successor, written n+1
with predecessor n (a natural number).

Select, take, and drop (recursion)

(!!) :: [a] -> Int -> a
(x:xs) !! 0 = x
(x:xs) !! i = xs !! (i-1)

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop i [] = []
drop i (x:xs) = drop (i-1) xs

Pattern matching and conditionals (squares)

Pattern matching

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

Conditionals with binding

squares :: [Int] -> [Int]
squares ws =

if null ws then
[]

else
let
x = head ws
xs = tail ws

in
x*x : squares xs

Pattern matching and conditionals (take)

Pattern matching

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

Conditionals with binding

take :: Int -> [a] -> [a]
take i ws

if i == 0 || null ws then
[]

else
let
x = head ws
xs = tail ws

in
x : take (i-1) xs

Pattern matching and guards (take)

Pattern matching

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

Guards

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) | i > 0 = x : take (i-1) xs

How take works (recursion)

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

take 3 "words"
=

’w’ : take 2 "ords"
=

’w’ : (’o’ : take 1 "rds")
=

’w’ : (’o’ : (’r’ : take 0 "ds"))
=

’w’ : (’o’ : (’r’ : []))
=

"wor"

The infinite case

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

takeComp :: Int -> [a] -> [a]
takeComp i xs = [x | (j,x) <- zip [0..] xs, j < i]

> take 3 [10..]
[10,11,12]

> takeComp 3 [10..]
[10,11,12 -- computation goes on forever!

The infinite case explained
Function takeComp is equivalent to takeCompRec.

takeCompRec :: Int -> [a] -> [a]
takeCompRec i xs = helper 0 i xs

where
helper j i [] = []
helper j i (x:xs) | j < i = x : helper (j+1) i xs

| otherwise = helper (j+1) i xs

takeCompRec 3 [10..]
=

helper 0 3 [10..]
=

10 : helper 1 3 [11..]
=

10 : (11 : helper 2 3 [12..])
=

10 : (11 : (12 : helper 3 3 [13..]))
=

10 : (11 : (12 : helper 4 3 [14..]))
= ...

Part II

Arithmetic

Arithmetic (recursion)

(+) :: Int -> Int -> Int
m + 0 = m
m + n = (m + (n-1)) + 1

(*) :: Int -> Int -> Int
m * 0 = 0
m * n = (m * (n-1)) + m

(ˆ) :: Int -> Int -> Int
m ˆ 0 = 1
m ˆ n = (m ˆ (n-1)) * m

How arithmetic works (recursion)

(+) :: Int -> Int -> Int
m + 0 = m
m + n = (m + (n-1)) + 1

2 + 3
=

(2 + 2) + 1
=

((2 + 1) + 1) + 1
=

(((2 + 0) + 1) + 1) + 1
=

((2 + 1) + 1) + 1
=

5

Giuseppe Peano (1858–1932)

The definition of the natural numbers is named the Peano axioms in his honour.
Made key contributions to the modern treatment of mathematical induction.

