Informatics 1
 Functional Programming Lecture 5

Select, Take, Drop

Don Sannella
University of Edinburgh

Part I

Select, take, and drop

Select, take, and drop

```
> "words" !! 3
' d'
> take 3 "words"
"wor"
> drop 3 "words"
"ds"
```

Select, take, and drop (comprehensions)

```
selectComp :: [a] -> Int -> a -- (!!)
selectComp xs i = the [ x | (j,x) <- zip [0..] xs, j == i ]
    where
    the [x] = x
takeComp :: Int -> [a] -> [a]
takeComp i xs = [ x | (j,x) <- zip [0..] xs, j < i ]
dropComp :: Int -> [a] -> [a]
dropComp i xs = [ x | (j,x) <- zip [0..] xs, j >= i ]
```

How take works (comprehension)

$$
\begin{aligned}
& \text { takeComp :: Int -> [a] -> [a] } \\
& \text { takeComp i xs }=[\mathrm{x} \mid(j, x)<-\operatorname{zip}[0 \ldots] x s, j<i] \\
& \text { takeComp } 3 \text { "words" } \\
& = \\
& \text { [x | (j, x) <- zip [0..] "words", j < } 3 \text {] } \\
& = \\
& {\left[\mathrm{x} \mid(j, x)<-\left[\left(0,{ }^{\prime} w^{\prime}\right),\left(1, \prime^{\prime}\right),\left(2,^{\prime} r^{\prime}\right),\left(3,^{\prime} d^{\prime}\right),\left(4,^{\prime} \mathrm{s}^{\prime}\right)\right]\right. \text {, }} \\
& j<3 \text {] } \\
& =\left[{ }^{\prime} \mathrm{w}^{\prime} \mid 0<3\right]++\left[{ }^{\prime} \mathrm{o}^{\prime} \mid 1<3\right]++\left[{ }^{\prime} \mathrm{r}^{\prime} \mid 2<3\right]++\left[\mathrm{d}^{\prime} \mid 3<3\right]++\left[{ }^{\prime} \mathrm{s}^{\prime} \mid 4<3\right] \\
& = \\
& {\left[{ }^{\prime} w^{\prime}\right]++\left[{ }^{\prime} \circ^{\prime}\right]++\left[\prime r^{\prime}\right]++[]++[]} \\
& = \\
& \text { "wor" }
\end{aligned}
$$

Lists

Every list can be written using only (:) and [].

```
[1,2,3] = 1 : (2 : (3 : []))
"list" = ['l','i','s','t']
    = 'l' : ('i' : ('s' : ('t' : [])))
```

A recursive definition: A list is either

- null, written [], or
- constructed, written $\mathrm{x}: \mathrm{xs}$, with head x (an element), and tail xs (a list).

Natural numbers

Every natural number can be written using only $(+1)$ and 0.

$$
3=((0+1)+1)+1
$$

A recursive definition: A natural number is either

- zero, written 0, or
- successor, written $\mathrm{n}+1$
with predecessor n (a natural number).

Select, take, and drop (recursion)

```
(!!) :: [a] -> Int -> a
(x:xs) !! 0 = x
(x:xS) !! i = xS !! (i-1)
take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs
drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop i [] = []
drop i (x:xs) = drop (i-1) xs
```


Pattern matching and conditionals (squares)

Pattern matching

```
squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs
```

Conditionals with binding

```
squares :: [Int] -> [Int]
squares ws =
    if null ws then
        []
    else
    let
        x = head ws
        xs = tail ws
        in
        x*x : squares xs
```


Pattern matching and conditionals (take)

Pattern matching

```
take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs
```

Conditionals with binding

```
take :: Int -> [a] -> [a]
take i ws
    if i == 0 || null ws then
        []
    else
        let
            x = head ws
            xs = tail ws
        in
        x : take (i-1) xs
```


Pattern matching and guards (take)

Pattern matching

```
take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs
```

Guards

```
take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) | i > 0 = x : take (i-1) xs
```


How take works (recursion)

```
take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs
take 3 "words"
=
    'w' : take 2 "ords"
=
    'w' : ('o' : take 1 "rds")
=
    'W' : ('O' : ('r' : take 0 "ds"))
=
    'W' : ('O' : ('r' : []))
=
    "wor"
```


The infinite case

```
take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs
takeComp :: Int -> [a] -> [a]
takeComp i xs = [ x | (j,x) <- zip [0..] xs, j < i ]
> take 3 [10..]
[10,11,12]
> takeComp 3 [10..]
[10,11,12 -- computation goes on forever!
```


The infinite case explained

Function takeComp is equivalent to takeCompRec.

```
takeCompRec :: Int -> [a] -> [a]
takeCompRec i xs = helper 0 i xs
    where
    helper j i [] = []
    helper j i (x:xs) | j < i = x : helper (j+1) i xs
    takeCompRec 3 [10..]
=
    helper 0 3 [10..]
=
    10 : helper 1 3 [11..]
=
    10 : (11 : helper 2 3 [12..])
=
    10 : (11 : (12 : helper 3 3 [13..]))
=
    10 : (11 : (12 : helper 4 3 [14..]))
= ...
```

 | otherwise \(=\) helper (j+1) i xs

Part II

Arithmetic

Arithmetic (recursion)

$$
\begin{aligned}
& \text { (+) : : Int -> Int -> Int } \\
& m+0=m \\
& m+n=(m+(n-1))+1 \\
& \text { (*) : : Int -> Int -> Int } \\
& m * 0=0 \\
& m * n=(m *(n-1))+m \\
& \text { (^) : : Int -> Int -> Int } \\
& \mathrm{m}^{\wedge} 0=1 \\
& m^{\wedge} \mathrm{n}=\left(\mathrm{m}^{\wedge}(\mathrm{n}-1)\right) \star m
\end{aligned}
$$

How arithmetic works (recursion)

$$
\begin{aligned}
& (+):: \text { Int -> Int -> Int } \\
& m+0=m \\
& m+n=(m+(n-1))+1 \\
& =2+3 \\
& =(2+2)+1 \\
& =((2+1)+1)+1 \\
& =((2+0)+1)+1)+1 \\
& =((2+1)+1)+1
\end{aligned}
$$

Giuseppe Peano (1858-1932)

The definition of the natural numbers is named the Peano axioms in his honour. Made key contributions to the modern treatment of mathematical induction.

