Part I

2023 Inf1A FP Competition
2023 Inf1A FP Competition

- Prizes: Amazon vouchers. And glory!
- Number of prizes depend on number and quality of entries.
- Write a Haskell program with interesting graphics. Be creative!
- Some entries from a previous year are online:
- Sponsored by Galois (galois.com)
- Submit code and image(s), list everyone who contributed, explain how to run.
 (Using process similar to tutorial submission — details to come.)
- Submission deadline: noon, Monday 20 November
- Prizes awarded: 2pm Tuesday 28 November
Part II

Efficiency and O-notation
Premature optimization is the root of all evil.

— Donald Knuth —
Premature optimization is the root of all evil in programming.

— Tony Hoare —
Left vs. Right
Let \(xss = [xs_1, \ldots, xs_m] \) consist of \(m \) lists each of length \(n \).

Associated to the left, \(\text{foldl} \ (++) \ [\] \ xss \).

\[
((([] + xs_1) + xs_2) + xs_3) \cdots + xs_m
\]

Number of steps
\[
0 + n + 2n + 3n + \ldots + (m - 1)n = O(m^2n)
\]

Associated to the right, \(\text{foldr} \ (++) \ [\] \ xss \).

\[
xs_1 + \cdots (xs_{m-2} + (xs_{m-1} + (xs_m + [])))
\]

Number of steps
\[
\underbrace{n + n + n + \cdots + n}_{m \text{ times}} = O(mn)
\]

steps. When \(m = 1000 \), the first takes a thousand times as long as the second!
$t = n \ vs \ t = n^2$
\[t = 2n \text{ vs } t = 0.5n^2 \]
Big-O notation

Definition We say f is $O(g)$ when g is an upper bound for f, for big enough inputs. To be precise, f is $O(g)$ if there are constants c and m such that $f(n) \leq cg(n)$ for all $n \geq m$.

For instance: $2n + 10$ is $O(n)$ because $2n + 10 \leq 4n$ for all $n \geq 5$.
Big-O notation

Definition We say \(f \) is \(O(g) \) when \(g \) is an upper bound for \(f \), for big enough inputs. To be precise, \(f \) is \(O(g) \) if there are constants \(c \) and \(m \) such that \(f(n) \leq cg(n) \) for all \(n \geq m \).

For instance: \(2n + 10 \) is \(O(n) \) because \(2n + 10 \leq 4n \) for all \(n \geq 5 \).

Constant factors don’t matter

\[
O(n) = O(an + b), \text{ for any } a \text{ and } b
\]
\[
O(n^2) = O(an^2 + bn + c), \text{ for any } a, b, \text{ and } c
\]
\[
O(n^3) = O(an^3 + bn^2 + cn + d), \text{ for any } a, b, c, \text{ and } d
\]
\[
O(\log_2(n)) = O(\log_{10}(n))
\]
$O(n), O(n^2), O(n^3), O(n^4)$
$O(\log n), O(n), O(n \log n), O(2^n)$
\(O(\log n), O(n \log n), O(2^n) \)

\(O(\log n) \) “logarithmic”: divide and conquer search algorithms

\(O(n) \) “linear”: normal list search algorithms

\(O(n \log n) \): sorting algorithms

\(O(2^n) \) “exponential”: tautology checking
Part III

Sets as lists
module List
 (Set, empty, insert, set, element, equal) where
import Test.QuickCheck

type Set a = [a]

empty :: Set a
empty = []

insert :: a -> Set a -> Set a
insert x xs = x:xs

set :: [a] -> Set a
set xs = xs
element :: Eq a => a -> Set a -> Bool
 x `element` xs = x `elem` xs

equal :: Eq a => Set a -> Set a -> Bool
 xs `equal` ys = xs `subset` ys && ys `subset` xs
 where
 xs `subset` ys = and [x `elem` ys | x <- xs]
prop_element :: [Int] -> Bool
prop_element ys =
 and [x 'element' s == odd x | x <- ys]
where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_element

-- Prelude List> check
-- +++ OK, passed 100 tests.
Part IV

Sets as *ordered* lists
module OrderedList
 (Set, empty, insert, set, element, equal) where

import Data.List (nub, sort)
import Test.QuickCheck

type Set a = [a]

invariant :: Ord a => Set a -> Bool
invariant xs =
 and [x < y | (x,y) <- zip xs (tail xs)]
empty :: Set a
empty = []

insert :: Ord a => a -> Set a -> Set a
insert x [] = [x]
insert x (y:ys) | x < y = x : y : ys
 | x == y = y : ys
 | x > y = y : insert x ys

set :: Ord a => [a] -> Set a
set xs = nub (sort xs)
element :: Ord a => a -> Set a -> Bool
x `element` [] = False
x `element` (y:ys) | x < y = False
| x == y = True
| x > y = x `element` ys

equal :: Eq a => Set a -> Set a -> Bool
xs `equal` ys = xs == ys
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
 where
 s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
 and [x 'element' s == odd x | x <- ys]
 where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_invariant >>
 quickCheck prop_element

Prelude OrderedList> check
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.
Part V

Sets as ordered trees
module Tree
 (Set (Nil, Node), empty, insert, set, element, equal) where

import Test.QuickCheck

data Set a = Nil | Node (Set a) a (Set a)

list :: Set a -> [a]
list Nil = []
list (Node l x r) = list l ++ [x] ++ list r

invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r) =
 invariant l && invariant r &&
 and [y < x | y <- list l] &&
 and [y > x | y <- list r]
empty :: Set a
empty = Nil

insert :: Ord a => a -> Set a -> Set a
insert x Nil = Node Nil x Nil
insert x (Node l y r)
 | x == y = Node l y r
 | x < y = Node (insert x l) y r
 | x > y = Node l y (insert x r)

set :: Ord a => [a] -> Set a
set = foldr insert empty
element :: Ord a => a -> Set a -> Bool
x `element` Nil = False
x `element` (Node l y r)
 | x == y = True
 | x < y = x `element` l
 | x > y = x `element` r

equal :: Ord a => Set a -> Set a -> Bool
s `equal` t = list s == list t
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
 where
 s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
 and [x 'element' s == odd x | x <- ys]
 where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_invariant >>
 quickCheck prop_element

-- Prelude Tree> check
-- +++ OK, passed 100 tests.
-- +++ OK, passed 100 tests.
Part VI

Sets as balanced trees
A balanced binary tree, Computer Science version
module BalancedTree
 (Set (Nil, Node), empty, insert, set, element, equal) where

import Test.QuickCheck

type Depth = Int

data Set a = Nil | Node (Set a) a (Set a) Depth

node :: Set a -> a -> Set a -> Set a
node l x r = Node l x r (1 + (depth l `max` depth r))

depth :: Set a -> Int
depth Nil = 0
depth (Node _ _ _ d) = d
list :: Set a -> [a]
list Nil = []
list (Node l x r _) = list l ++ [x] ++ list r

invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r d) =
invariant l && invariant r &&
and [y < x | y <- list l] &&
and [y > x | y <- list r] &&
abs (depth l - depth r) <= 1 &&
d == 1 + (depth l `max` depth r)
empty :: Set a
empty = Nil

insert :: Ord a => a -> Set a -> Set a
insert x Nil = node empty x empty
insert x (Node l y r _)
 | x == y = node l y r
 | x < y = rebalance (node (insert x l) y r)
 | x > y = rebalance (node l y (insert x r))

set :: Ord a => [a] -> Set a
set = foldr insert empty
Rebalancing

\[
\text{Node } (\text{Node}\ a\ x\ b)\ y\ c\ \rightarrow\ \text{Node } a\ x\ (\text{Node}\ b\ y\ c)
\]

\[
\text{Node } (\text{Node}\ a\ x\ (\text{Node}\ b\ y\ c)\ z\ d)\ \rightarrow\ \text{Node } (\text{Node}\ a\ x\ b)\ y\ (\text{Node}\ c\ z\ d)
\]
rebalance :: Set a -> Set a
rebalance (Node (Node a x b _) y c _) |
 depth a >= depth b && depth a > depth c
 = node a x (node b y c)
rebalance (Node a x (Node b y c _) _) |
 depth c >= depth b && depth c > depth a
 = node (node a x b) y c
rebalance (Node (Node a x (Node b y c _) _) z d _) |
 depth (node b y c) > depth d
 = node (node a x b) y (node c z d)
rebalance (Node a x (Node (Node b y c _) z d _) _) |
 depth (node b y c) > depth a
 = node (node a x b) y (node c z d)
rebalance a = a
BalancedTree.hs (5)

```haskell
element :: Ord a => a -> Set a -> Bool
x 'element' Nil = False
x 'element' (Node l y r _)  
  | x == y     = True
  | x < y      = x 'element' l
  | x > y      = x 'element' r

equal :: Ord a => Set a -> Set a -> Bool
s 'equal' t = list s == list t
```
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
 where
 s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
 and [x 'element' s == odd x | x <- ys]
 where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_invariant >>
 quickCheck prop_element

-- Prelude BalancedTree> check
-- +++ OK, passed 100 tests.
Part VII

Complexity, revisited
Summary

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>set</th>
<th>element</th>
<th>equal</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>OrderedList</td>
<td>$O(n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Tree</td>
<td>$O(\log n)^*$</td>
<td>$O(n \log n)^*$</td>
<td>$O(\log n)^*$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>BalancedTree</td>
<td>$O(\log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

* average case / † worst case
Part VIII

Data Abstraction
Ordered lists: remember the invariant?

```haskell
module OrderedList
  (Set, empty, insert, set, element, equal) where

import Data.List (nub, sort)
import Test.QuickCheck

type Set a = [a]

invariant :: Ord a => Set a -> Bool
invariant xs =
  and [ x < y | (x, y) <- zip xs (tail xs) ]
```
Ordered lists: breaking the invariant!

```haskell
module OrderedListTest where
import OrderedList

test :: Int -> Bool
test n =
  s 'equal' t
  where
  s = set [1,2..n]
t = set [n,n-1..1]

badtest :: Int -> Bool
badtest n =
  s 'equal' t
  where
  s = [1,2..n]        -- no call to set!
t = [n,n-1..1]       -- no call to set! breaks the invariant!
```
Ordered trees: remember the invariant?

```haskell
module Tree
  (Set (Nil, Node), empty, insert, set, element, equal) where
import Test.QuickCheck

data Set a = Nil | Node (Set a) a (Set a)

list :: Set a -> [a]
list Nil = []
list (Node l x r) = list l ++ [x] ++ list r

invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r) =
  invariant l && invariant r &&
  and [ y < x | y <- list l ] &&
  and [ y > x | y <- list r ]
```
Ordered trees: breaking the invariant!

```haskell
module TreeTest where
import Tree

test :: Int -> Bool
test n =
    s 'equal' t
 where
    s = set [1,2..n]
    t = set [n,n-1..1]

badtest :: Bool
badtest =
    s 'equal' t
 where
    s = set [1,2,3]
    t = Node Nil 1 (Node Nil 3 (Node Nil 2 Nil))
-- breaks the invariant!
```
Ordered lists: add a hidden constructor!

```haskell
module OrderedListAbs
    (Set, empty, insert, set, element, equal) where

import Data.List (nub, sort)
import Test.QuickCheck

data Set a = MkSet [a]

invariant :: Ord a => Set a -> Bool
invariant (MkSet xs) =
    and [ x < y | (x,y) <- zip xs (tail xs) ]
```
empty :: Set a
empty = MkSet []

insert :: Ord a => a -> Set a -> Set a
insert x (MkSet ys) = MkSet (ins x ys)
 where
 ins x [] = [x]
 ins x (y:ys) | x < y = x : y : ys
 | x == y = y : ys
 | x > y = y : ins x ys

set :: Ord a => [a] -> Set a
set xs = MkSet (nub (sort xs))
element :: Ord a => a -> Set a -> Bool
x `element` MkSet ys = x `elt` ys
 where
 x `elt` [] = False
 x `elt` (y:ys) | x < y = False
 | x == y = True
 | x > y = x `elt` ys

equal :: Eq a => Set a -> Set a -> Bool
MkSet xs `equal` MkSet ys = xs == ys
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
 where
 s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
 and [x `element` s == odd x | x <- ys]
 where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_invariant >>
 quickCheck prop_element

Prelude OrderedListAbs> check
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.
Ordered lists: can’t break the invariant now!

```haskell
module OrderedListAbsTest where
import OrderedListAbs

badtest :: Int -> Bool
badtest n =
    s 'equal' t
    where
    s = [1,2..n] -- no call to set!
    t = [n,n-1..1] -- no call to set! breaks the invariant!
```

OrderedListAbsTest:7:3: error:
 Couldn’t match expected type Set a0 with actual type [Int]
 In the first argument of equal, namely s
 In the expression: s 'equal' t

OrderedListAbsTesttest.hs:7:13: error:
 Couldn’t match expected type Set a0 with actual type [Int]
 In the second argument of equal, namely t
 In the expression: s 'equal' t
Ordered lists: can’t break the invariant now! (2)

```haskell
module OrderedListAbsTest where
import OrderedListAbs

badtest :: Int -> Bool
badtest n =
  s 'equal' t
  where
    s = MkSet [1,2..n]
    t = MkSet [n,n-1..1] \-- breaks the invariant!

OrderedListAbsTest.hs:8:7-11: error:
  Data constructor not in scope: MkSet :: [Int] -> Set t0
OrderedListAbsTest.hs:9:7-11: error:
  Data constructor not in scope: MkSet :: [Int] -> Set t0
```
Ordered trees: hide the constructor!

```haskell
module TreeAbs
  (Set,empty,insert,set,element,equal) where
import Test.QuickCheck

data Set a = Nil | Node (Set a) a (Set a)

list :: Set a -> [a]
list Nil = []
list (Node l x r) = list l ++ [x] ++ list r

invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r) =
  invariant l && invariant r &&
  and [ y < x | y <- list l ] &&
  and [ y > x | y <- list r ]
```
Ordered trees: can’t break the invariant now!

```haskell
module TreeAbsTest where
import TreeAbs

badtest :: Bool
badtest =
    s 'equal' t
    where
        s = set [1,2,3]
        t = Node Nil 1 (Node Nil 3 (Node Nil 2 Nil))
        -- breaks the invariant!
```

TreeAbsTest.hs:9:7-10: error:
 Data constructor not in scope: Node :: t0 -> Integer -> t3 -> t
TreeAbsTest.hs:9:13-16: error:
 Data constructor not in scope: Node :: t1 -> Integer -> t2 -> t0
TreeAbsTest.hs:9:18-20: error:
 Data constructor not in scope: Nil
etc. etc.
Hiding—the secret of abstraction

```
module OrderedListAbs(Set,empty,insert,set,element,equal)

$ ghci OrderedListAbs.hs
> let s0 = MkSet [2,7,1,8,2,8]
Not in scope: data constructor ‘MkSet’

VS.

module OrderedList(Set(MkSet),empty,insert,element,equal)

$ ghci OrderedList.hs
> let s0 = MkSet [2,7,1,8,2,8]
> invariant s0
False
> 1 ‘element’ s0
False
```
Hiding—the secret of abstraction

```haskell
module TreeAbs (Set, empty, insert, set, element, equal)

ghci TreeAbs.hs
> let s0 = Node Nil 1 (Node Nil 3 (Node Nil 2 Nil))
Not in scope: data constructor 'Node', 'Nil'

VS.

module Tree (Set (Node, Nil), empty, insert, element, equal)

ghci TreeUnabs.hs
> let s0 = Node Nil 1 (Node Nil 3 (Node Nil 2 Nil))
> invariant s0
False
> 2 'element' s0
False
```
Preserving the invariant

```haskell
module TreeAbsInvariantTest where

import TreeAbs

prop_invariant_empty = invariant empty

prop_invariant_insert x s =
  invariant s ==> invariant (insert x s)

prop_invariant_set xs = invariant (set xs)

check =
  quickCheck prop_invariant_empty >>
  quickCheck prop_invariant_insert >>
  quickCheck prop_invariant_set

-- Prelude TreeAbsInvariantTest> check
-- +++ OK, passed 1 tests.
-- +++ OK, passed 100 tests.
-- +++ OK, passed 100 tests.
```
It’s mine!