Informatics 1

Introduction to Computation
Lectures 17-18

Combinatorial Algorithms

Don Sannella

University of Edinburgh

Part 1

Preliminaries

Nub

nub :: Eg a => [a]
nub [] =[]
nub (xX:x3) = X

—— > nub "avocado"
—— "avocd"

—-— > nub "peach"
—-— "peach"

Distinct

distinct :: Egq a => [a] —-> Bool
distinct xs = xs == nub xs

—— > distinct "avocado"
—— False

—— > distinct "peach"
—— True

QuickCheck with a bound on size

sizeCheck n = gquickCheckWith (stdArgs {maxSize = n})

Part 11

Sublists

Is a list a sublist of another list?

sub :: Egq a => [a] —> [a] —> Bool
xs ‘sub' ys = and [x ‘elem' ys | x <- xS

—-— > "pea" ‘sub' "apple"
—— True

—— > "peach" ‘sub' "apple"
—— False

All sublists of a list

subs :: [a] —> [[a]l]
subs [] = [[]]
subs (X:x8) = subs xs ++ map (x:) (subs xs)

—— > subs [0, 1]
-— (1,111,101, 10,171]

—— > subs "abc"
_ |:" ", "C", "b", "bC", "a", "a.C", "ab", "abC"]

QuickCheck for sublists

prop_subs :: [Int] —-> Property
prop_subs xs =
distinct xs ==>
and [ys ‘sub' xs | ys <- subs xs]

&& distinct (subs xs)
&& all distinct (subs xs)
&& length (subs xs) == " length xs

—— > sizeCheck 10 prop_subs
—-— +++ OK, passed 100 tests; 30 discarded.
-— (0.77 secs, 6,895,808 bytes)

Part 111

Permutations

Select one element from a list

splits :: [a] —> [(a, [al)]

splits xs =
[(xs!'!'k, take k xs ++ drop (k+1l) xs) | k <= [0..n—-1]]
where

n = length xs

—-— > splits "abc"
- [(IaI,"bC"),(IbI,"aC"),(ICI,"ab")]

All permutations of a list

perms :: [a] —> [[a]]
perms [] = [[]]
perms (x:xs) = [y:zs | (y,ys) <— splits (x:xs),

zs <— perms ysS |

—— > perms "abc"
I ["abC", "aCb", "baC", "bca"’ "cab"’ "Cba"]

QuickCheck for permutations

fac :: Int —-> Int
facn | n > 0 = product [1..n]
prop_perms :: [Int] —-> Property
prop_perms xXs =
distinct xs ==>
and [sort ys == sort xs | ys <— perms Xs]

&& distinct (perms xs)
&& all distinct (perms xs)
&& length (perms xs) == fac (length xs)

—— > sizeCheck 8 prop_perms
—-— +++ OK, passed 100 tests; 21 discarded.
—-— (2.41 secs, 235,561,416 bytes)

Part IV

Choose

Choose k elements from a list

choose :: Int -—> [a] —-> [[a]]
choose 0 [] = [[]1]
choose k (x:xs)
| == 0 = [[]]
| == n = [x:x5]
| 0 < k && k < n = choose k xs ++
map (x:) (choose (k-1) xs)
where
n = length (x:xs)

—— > choose 3 "abcde"
_ ["Cde", "bde", "bce", "de", "ade"’
_ "ace", "aCd", "abe", "abd", "abcﬂ]

QuickCheck for choose

prop_choose :: Int —-> [Int] —-> Property
prop_choose k xs =
0 <= k && k <= n && distinct xs ==>
and [ys ‘sub' xs && length ys == Kk
| ys <— choose k xs]
&& distinct (choose k xs)
&& all distinct (choose k xs)
&& length (choose k xs) ==
fac n ‘div' (fac k * fac (n—-k))
where
n = length xs

—— > s1zeCheck 10 prop_choose
—— +++ OK, passed 100 tests; 431 discarded.
—— (1.84 secs, 18,373,648 bytes)

QuickCheck relating choose and subs

prop_choose_subs :: [Int] —-> Bool
prop_choose_subs xs =
sort (subs xs) ==
sort [ys | k <= [0..n], ys <— choose k xs]
where
n = length xs

—— > sizeCheck 10 prop_choose_subs
—-— +++ OK, passed 100 tests.
-—— (0.26 secs, 6,852,984 bytes)

Part V

Partitions

All partitions of a given number

partitions :: Int -> [[Int]]
partitions 0 = [[]]
partitions n | n >0 = [k : xs | k <= [1..n],

Xs <- partitions (n-k),
all (k <=) xs]

—— > partitions 5
- [[l,l,l,l,l], [1111112]1 [11113]/ [112/2]/ [114]1 [213]1 [5]]

QuickCheck for partitions

prop_partitions :: Int —> Property
prop_partitions n =
n > 0 ==> all ((== n) . sum) (partitions n)

—— > sizeCheck 10 prop_partitions
—— +++ OK, passed 100 tests; 70 discarded.
-—— (0.71 secs, 4,511,688 bytes)

prop_partitions’ :: [Int] —-> Property
prop_partitions’ xs =
all (> 0) xs ==> sort xs ‘elem' partitions (sum XxS)

—— > si1zeCheck 8 prop_partitions’
—— +++ OK, passed 100 tests; 131 discarded.
—— (2.51 secs, 30,097,560 bytes)

Part VI

Change

All ways to make change for a given amount

type Coin = Int
type Total = Int

change :: Total -> [Coin] —-> [[Coin]]
change n xs = change’ n (sort xs)
where
change’ 0 xs = [[]]
change’ n xs | n > 0 =
[v ¢ zs | (y, ys) <— nub (splits xs),
y <= n,

zs <— change’ (n-y) (filter (y <=) ys)]

—— > change 30 [5,5,10,10,20]
- [[5/ 5/ lOr 10]/ [5/ 5/20]/ [10120]]

QuickCheck for change

prop_change :: Total —-> [Coin] —> Property
prop_change n xs =
0 <= n && all (0 <) xs ==>
all ((== n) . sum) (change n xs)

—— > s1zeCheck 10 prop_change
—-— +++ OK, passed 100 tests; 486 discarded.
—— (2.06 secs, 14,140,144 Dbytes)

Part VII

Eight Queens

Eight queens

type Row = Int

type Col = Int

type Coord = (Row, Col)

type Board = [Row]

queens :: [Board]

queens = filter ok (perms [1..8])
ok :: Board —-> Bool

ok gs = and [not (check p p’)
| [p,p’] <— choose 2 (coords gs)]

coords :: Board —-> [Coord]
coords gs = zip [1..] gs
check :: Coord —-> Coord —> Bool

check (x,y) (x',y") = abs (x-x") == abs (y-y')

Running eight queens

—— > head queens
- [115181613171214]
-—— (0.13 secs, 46,514,288 bytes)

—— > length queens
—— 92
—— (1.15 secs, 645,843,960 bytes)

