
Informatics 1
Introduction to Computation

Lectures 17–18

Combinatorial Algorithms

Don Sannella
University of Edinburgh

Part I

Preliminaries

Nub

nub :: Eq a => [a] -> [a]
nub [] = []
nub (x:xs) = x : nub [y | y <- xs, x /= y]

-- > nub "avocado"
-- "avocd"
-- > nub "peach"
-- "peach"

Distinct

distinct :: Eq a => [a] -> Bool
distinct xs = xs == nub xs

-- > distinct "avocado"
-- False
-- > distinct "peach"
-- True

QuickCheck with a bound on size

sizeCheck n = quickCheckWith (stdArgs {maxSize = n})

Part II

Sublists

Is a list a sublist of another list?

sub :: Eq a => [a] -> [a] -> Bool
xs ‘sub‘ ys = and [x ‘elem‘ ys | x <- xs]

-- > "pea" ‘sub‘ "apple"
-- True
-- > "peach" ‘sub‘ "apple"
-- False

All sublists of a list

subs :: [a] -> [[a]]
subs [] = [[]]
subs (x:xs) = subs xs ++ map (x:) (subs xs)

-- > subs [0,1]
-- [[],[1],[0],[0,1]]
-- > subs "abc"
-- ["","c","b","bc","a","ac","ab","abc"]

QuickCheck for sublists

prop_subs :: [Int] -> Property
prop_subs xs =

distinct xs ==>
and [ys ‘sub‘ xs | ys <- subs xs]
&& distinct (subs xs)
&& all distinct (subs xs)
&& length (subs xs) == 2 ˆ length xs

-- > sizeCheck 10 prop_subs
-- +++ OK, passed 100 tests; 30 discarded.
-- (0.77 secs, 6,895,808 bytes)

Part III

Permutations

Select one element from a list

splits :: [a] -> [(a, [a])]
splits xs =

[(xs!!k, take k xs ++ drop (k+1) xs) | k <- [0..n-1]]
where
n = length xs

-- > splits "abc"
-- [(’a’,"bc"),(’b’,"ac"),(’c’,"ab")]

All permutations of a list

perms :: [a] -> [[a]]
perms [] = [[]]
perms (x:xs) = [y:zs | (y,ys) <- splits (x:xs),

zs <- perms ys]

-- > perms "abc"
-- ["abc","acb","bac","bca","cab","cba"]

QuickCheck for permutations

fac :: Int -> Int
fac n | n >= 0 = product [1..n]

prop_perms :: [Int] -> Property
prop_perms xs =

distinct xs ==>
and [sort ys == sort xs | ys <- perms xs]
&& distinct (perms xs)
&& all distinct (perms xs)
&& length (perms xs) == fac (length xs)

-- > sizeCheck 8 prop_perms
-- +++ OK, passed 100 tests; 21 discarded.
-- (2.41 secs, 235,561,416 bytes)

Part IV

Choose

Choose k elements from a list

choose :: Int -> [a] -> [[a]]
choose 0 [] = [[]]
choose k (x:xs)

| k == 0 = [[]]
| k == n = [x:xs]
| 0 < k && k < n = choose k xs ++

map (x:) (choose (k-1) xs)
where
n = length (x:xs)

-- > choose 3 "abcde"
-- ["cde","bde","bce","bcd","ade",
-- "ace","acd","abe","abd","abc"]

QuickCheck for choose

prop_choose :: Int -> [Int] -> Property
prop_choose k xs =

0 <= k && k <= n && distinct xs ==>
and [ys ‘sub‘ xs && length ys == k

| ys <- choose k xs]
&& distinct (choose k xs)
&& all distinct (choose k xs)
&& length (choose k xs) ==

fac n ‘div‘ (fac k * fac (n-k))
where
n = length xs

-- > sizeCheck 10 prop_choose
-- +++ OK, passed 100 tests; 431 discarded.
-- (1.84 secs, 18,373,648 bytes)

QuickCheck relating choose and subs

prop_choose_subs :: [Int] -> Bool
prop_choose_subs xs =

sort (subs xs) ==
sort [ys | k <- [0..n], ys <- choose k xs]

where
n = length xs

-- > sizeCheck 10 prop_choose_subs
-- +++ OK, passed 100 tests.
-- (0.26 secs, 6,852,984 bytes)

Part V

Partitions

All partitions of a given number

partitions :: Int -> [[Int]]
partitions 0 = [[]]
partitions n | n > 0 = [k : xs | k <- [1..n],

xs <- partitions (n-k),
all (k <=) xs]

-- > partitions 5
-- [[1,1,1,1,1],[1,1,1,2],[1,1,3],[1,2,2],[1,4],[2,3],[5]]

QuickCheck for partitions

prop_partitions :: Int -> Property
prop_partitions n =

n >= 0 ==> all ((== n) . sum) (partitions n)

-- > sizeCheck 10 prop_partitions
-- +++ OK, passed 100 tests; 70 discarded.
-- (0.71 secs, 4,511,688 bytes)

prop_partitions’ :: [Int] -> Property
prop_partitions’ xs =

all (> 0) xs ==> sort xs ‘elem‘ partitions (sum xs)

-- > sizeCheck 8 prop_partitions’
-- +++ OK, passed 100 tests; 131 discarded.
-- (2.51 secs, 30,097,560 bytes)

Part VI

Change

All ways to make change for a given amount

type Coin = Int
type Total = Int

change :: Total -> [Coin] -> [[Coin]]
change n xs = change’ n (sort xs)

where
change’ 0 xs = [[]]
change’ n xs | n > 0 =

[y : zs | (y, ys) <- nub (splits xs),
y <= n,
zs <- change’ (n-y) (filter (y <=) ys)]

-- > change 30 [5,5,10,10,20]
-- [[5,5,10,10],[5,5,20],[10,20]]

QuickCheck for change

prop_change :: Total -> [Coin] -> Property
prop_change n xs =

0 <= n && all (0 <) xs ==>
all ((== n) . sum) (change n xs)

-- > sizeCheck 10 prop_change
-- +++ OK, passed 100 tests; 486 discarded.
-- (2.06 secs, 14,140,144 bytes)

Part VII

Eight Queens

Eight queens

type Row = Int
type Col = Int
type Coord = (Row, Col)
type Board = [Row]

queens :: [Board]
queens = filter ok (perms [1..8])

ok :: Board -> Bool
ok qs = and [not (check p p’)

| [p,p’] <- choose 2 (coords qs)]

coords :: Board -> [Coord]
coords qs = zip [1..] qs

check :: Coord -> Coord -> Bool
check (x,y) (x’,y’) = abs (x-x’) == abs (y-y’)

Running eight queens

-- > head queens
-- [1,5,8,6,3,7,2,4]
-- (0.13 secs, 46,514,288 bytes)

-- > length queens
-- 92
-- (1.15 secs, 645,843,960 bytes)

