Given a universe X and predicates a, b, we put
$a \vDash b \quad \longleftrightarrow \quad \forall x \in X . a(x) \rightarrow b(x)$.
A categorical proposition $\Phi(a, b)$ is one of $a \vDash b, a \vDash \neg b, a \not \models \neg b$, $a \not \models b$, or $\Phi(b, a)$.

All Greeks are human
All humans are mortal
\therefore All Greeks are mortal
All lions are animals
Some lion is fierce
\therefore Some animal is fierce

Given a universe X and predicates a, b, we put
$a \vDash b \quad \longleftrightarrow \quad \forall x \in X . a(x) \rightarrow b(x)$.
A categorical proposition $\Phi(a, b)$ is one of $a \vDash b, a \vDash \neg b, a \not \models \neg b$, $a \not \models b$, or $\Phi(b, a)$.
A syllogism is a rule of the form $\frac{\Phi_{1}(a, b) \quad \Phi_{2}(b, c)}{\Phi_{3}(a, c)}$

All Greeks are human
All humans are mortal
\therefore All Greeks are mortal
All lions are animals
Some lion is fierce
\therefore Some animal is fierce

Given a universe X and predicates a, b, we put
$a \vDash b \quad \longleftrightarrow \quad \forall x \in X . a(x) \rightarrow b(x)$.
A categorical proposition $\Phi(a, b)$ is one of $a \vDash b, a \vDash \neg b, a \not \models \neg b$, $a \not \models b$, or $\Phi(b, a)$.
A syllogism is a rule of the form $\frac{\Phi_{1}(a, b) \quad \Phi_{2}(b, c)}{\Phi_{3}(a, c)}$
All sound syllogisms can be derived from $\frac{a \vDash b \quad b \vDash c}{a \vDash c}$ by applying

- renaming of predicates by (negated) predicates
- double negation cancellation $\neg \neg a \longleftrightarrow a$
- contraposition of a sequent: $\Phi \vDash \psi \quad \longleftrightarrow \quad \neg \psi \vDash \neg \Phi$
- contraposition of the rule: $\frac{\Phi \psi}{\gamma} \longleftrightarrow \frac{\Phi}{\neg \psi}$

All Greeks are human
All humans are mortal
\therefore All Greeks are mortal
All lions are animals Some lion is fierce \therefore Some animal is fierce

Categorical propositions (with mediaeval abbreviations) are:
Aab universal affirmative: a holds of every b (every b is a)
Eab universal negative: a holds of no b (no b is a)
lab particular affirmative: a holds of some b (some b is a)
Oab particular negative: a fails of some b (some b is not a)
The a, b are called terms. a is the predicate and b the subject of the
Handy mnemonic for abbreviations:
Afflrmo 'I affirm' $n E g O$ 'I deny' proposition.

Categorical propositions (with mediaeval abbreviations) are:
Aab universal affirmative: a holds of every b (every b is a)
Eab universal negative: a holds of no b (no b is a)
lab particular affirmative: a holds of some b (some b is a) Oab particular negative: a fails of some b (some b is not a) The a, b are called terms. a is the predicate and b the subject of the

Handy mnemonic for abbreviations:
Afflrmo 'I affirm' nEgO 'I deny' proposition.
Aristotle was not interested in unicorns: mentioning a term a implies that some a exists. All terms are inhabited! (The existential assumption.)
Note that this means $A a b$ and $O a b$ are not negatives of each other - something that caused 2000 years of argument.

A figure is an argument comprising two premise propositions and a conclusion proposition, such that one premise (the major) contains the predicate of the conclusion (the major term) and another middle term, and the other premise (the minor) contains the subject of the conclusion (the minor term) and the middle term.

All humans ${ }^{\text {subj, mid }}$ are mortal ${ }^{\text {pred, maj }}$ major
All Greeks ${ }^{\text {subj, min }}$ are human ${ }^{\text {pred, mid }}$ minor
\therefore All Greeks ${ }^{\text {subj, minor }}$ are mortal ${ }^{\text {pred,major }}$
Amh, Ahg, \therefore Amg

A figure is an argument comprising two premise propositions and a conclusion proposition, such that one premise (the major) contains the predicate of the conclusion (the major term) and another middle term, and the other premise (the minor) contains the subject of the conclusion (the minor term) and the middle term.
Figures are of three(four) kinds:
First ?ab, ?bc, \therefore ?ac
Second ?ab, ?ac, \therefore ? bc
Third ?ac, ?bc, $\therefore ? a b$

All humans ${ }^{\text {subj, mid }}$ are mortal ${ }^{\text {pred, maj }}$ major
All Greeks ${ }^{\text {subj, min }}$ are human ${ }^{\text {pred, mid }}$ minor
\therefore All Greeks ${ }^{\text {subj, minor }}$ are mortal ${ }^{\text {Pred, major }}$

Fourth ? ba, ?cb, \therefore ? ac, but Aristotle treated these under the First. Amh, Ahg, \therefore Amg

A figure is an argument comprising two premise propositions and a conclusion proposition, such that one premise (the major) contains the predicate of the conclusion (the major term) and another middle term, and the other premise (the minor) contains the subject of the conclusion (the minor term) and the middle term.
Figures are of three(four) kinds:
First ?ab, ?bc, \therefore ?ac
Second ?ab, ?ac, \therefore ? bc
Third ?ac, ?bc, $\therefore ? a b$

All humans ${ }^{\text {subj, mid }}$ are mortal ${ }^{\text {pred, maj }}$ major
All Greeks ${ }^{\text {subj, min }}$ are human ${ }^{\text {pred, mid }}$ minor
\therefore All Greeks ${ }^{\text {subj, minor }}$ are mortal ${ }^{\text {pred, major }}$

Fourth ? ba, ?cb, \therefore ?ac, but Aristotle treated these under the First. Amh, Ahg, \therefore Amg A sound figure is a syllogism. Aristotle took the First Figures to be self-evidently sound or unsound. The others were proved by conversions ($A a b \rightarrow I b a$, lab $\leftrightarrow I b a, E a b \leftrightarrow E b a$), contradiction, and a dodgy argument called ekthesis, or disproved by counter-example.

Mediaeval logicians (Avicenna, Boethius, Peter Abelard, William of Ockham, John Buridan et al.) refined, developed and extended the theory (including flipping the order from 'Pred belongs to Subj' to 'Subj is Pred').
Buridan in particular developed Aristotle's modal logic (syllogisms with necessity and possibility) from something almost entirely incoherent to something coherent, and probably $S 5$.

Mediaeval logic students understandably found it difficult to learn this stuff, and used mnemonics:
Barbara celarent darii ferio baralipton
Celantes dabitis fapesmo frisesomorum
Cesare camestres festino baroco
Darapti felapton disamis datisi bocardo ferison
Each word names a syllogism and reminds you what it is and how it is derived.

The first three vowels tell you the proposition forms.
A univ affirm E univ neg I part affirm O part neg

The first three vowels tell you the proposition forms．
The first letter labels the four sound First Figures：
A univ affirm E univ neg I part affirm
O part neg Barbara Aab，Abc，$\therefore A a c$ Celarent Eab，Abc，\therefore Eac

Darii $A a b, l b c, \therefore l a c$
Ferio Eab，$l b c, \therefore$ Oac

The first three vowels tell you the proposition forms.
The first letter labels the four sound First Figures:
A univ affirm E univ neg I part affirm
O part neg Barbara Aab, Abc, \therefore Aac Celarent Eab, Abc, \therefore Eac

Darii $A a b, l b c, \therefore l a c$
Ferio Eab, lbc, \therefore Oac
Some letters show conversions of the preceding proposition:
P instantiate $A b c$ to $l c b$
daraPti $A a c, A b c \rightarrow A a c, I c b, \therefore$ lab (darii)

The first three vowels tell you the proposition forms.
The first letter labels the four sound First Figures:
A univ affirm E univ neg I part affirm
O part neg

Barbara Aab, Abc, \therefore Aac
Celarent Eab, Abc, \therefore Eac
Darii $A a b, l b c, \therefore l a c$
Ferio Eab, lbc, \therefore Oac
Some letters show conversions of the preceding proposition:
P instantiate $A b c$ to $I c b$
daraPti Aac, Abc \rightarrow Aac, Icb, \therefore lab (darii)
S swap subj/pred in E or I
datiSi $A a c, I b c \rightarrow A a c, I c b, \therefore$ lab (darii)

The first three vowels tell you the proposition forms.
The first letter labels the four sound First Figures:
Barbara Aab, Abc, \therefore Aac
Celarent Eab, Abc, \therefore Eac
Darii $A a b, l b c, \therefore l a c$
Ferio Eab, lbc, \therefore Oac
Some letters show conversions of the preceding proposition:
P instantiate $A b c$ to $l c b$
daraPti $A a c, A b c \rightarrow A a c, I c b, \therefore$ lab (darii)
S swap subj/pred in E or I
datiSi $A a c, I b c \rightarrow A a c, I c b, \therefore$ lab (darii)
M swap premises
$c a M$ estres $A a b, E a c \rightarrow_{s} A a b, E c a={ }_{m}$ Eca, Aab, \therefore Ecb (celarent) $\rightarrow_{s} E b c$

The first three vowels tell you the proposition forms.
The first letter labels the four sound First Figures:
Barbara Aab, Abc, $\therefore A a c$
Celarent Eab, Abc, \therefore Eac
Darii $A a b, l b c, \therefore l a c$
Ferio Eab, lbc, \therefore Oac
Some letters show conversions of the preceding proposition:
P instantiate $A b c$ to $I c b$
daraPti Aac, Abc \rightarrow Aac, Icb, \therefore lab (darii)
S swap subj/pred in E or I
datiSi $A a c, I b c \rightarrow A a c, I c b, \therefore$ lab (darii)
M swap premises
$c a M$ Mestres Aab, Eac $\rightarrow_{s} A a b, E c a={ }_{m}$ Eca, Aab, \therefore Ecb (celarent) $\rightarrow_{s} E b c$
C contrapose premise and conclusion
baroCo Aab, Oac \therefore Obc \leftrightarrow_{c} Aab, Abc, \therefore Aac (barbara)

Jacobus Gallus (1550-1591) was a Slovene composer and organist. As well as hundreds of religious motets, he wrote many secular madrigals.
Here is Gallus' madrigal Barbara celarent sung by the Czech early music group Societas Incognitorum.

Aristotle, Prior Analytics, tr. A.J. Jenkinson, MIT Classic Archive. Lagerlund, Henrik, 'Medieval Theories of the Syllogism', The Stanford Encyclopedia of Philosophy (Summer 2021 Edition), Edward N. Zalta (ed.), Link.
Smith, Robin, 'Aristotle's Logic', The Stanford Encyclopedia of Philosophy (Fall 2020 Edition), Edward N. Zalta (ed.), Link.
Spade, Paul Vincent, Thoughts, Words and Things: An Introduction to Late Mediaeval Logic and Semantic Theory. Link (2002). Uckelman, Sara L., 'Syllogism Mnemonics', Medieval Logic Blog (2017).

