
reg(ular )?exp((?<=g...)|(?<= ...)ression)s

Julian Bradfield



Regular Expressions per Inf1/2

Input symbols: a, b, c , . . .

Empty: ε

Concatenation: e1e2

Union/alternation: e1 ∪ e2

Kleene star: e∗
Parentheses as usual.

And (I presume) we tell them that you can add intersection and
complementation, but it’s harder to implement.



Regular Expressions in real (Unix) life

for decades were defined by grep and egrep. Give or take some
backslashes, we had:

Literal characters: a

Concatenation: ab

Union: a|b

Kleene star: a*

Parentheses

Plus a bunch of convenient but obviously sugary abbreviations:

Character sets and classes: ., [abc], [^A-Z], \w

Optionality: (xyx)?

More quantifiers: a+, (bc){3,7}

and slightly less obviously:



Zero-width assertions matching ε at:

beginning/end of string: ^In the, Omega$

edge of word: \bthe\b

and so on.

Still obviously sugar, but your Inf1 students might have to think
about producing the FSM.

Larry Wall begat Perl . . .



Zero-width assertions matching ε at:

beginning/end of string: ^In the, Omega$

edge of word: \bthe\b

and so on.

Still obviously sugar, but your Inf1 students might have to think
about producing the FSM.

Larry Wall begat Perl . . .



Perl

Practical Extraction and Report Language

Pathologically Eclectic Rubbish Lister

Perl is the antithesis of everything the Programming Language
group does. Most of my programming is in Perl.

General philosophy of Perl:

If you see a useful feature in another language, put it in Perl:
associative arrays, references, symbolic (call-by-name) references,
dynamic binding, static binding, dynamic code construction, object
orientation, . . .

and you never need to throw anything out

and leave behind the stuff that just gets in the way: types,
encapsulation

Perl was not the only language pushing more complex regexps, but
probably the most influential.



Perl

Practical Extraction and Report Language

Pathologically Eclectic Rubbish Lister

Perl is the antithesis of everything the Programming Language
group does. Most of my programming is in Perl.

General philosophy of Perl:

If you see a useful feature in another language, put it in Perl:
associative arrays, references, symbolic (call-by-name) references,
dynamic binding, static binding, dynamic code construction, object
orientation, . . .

and you never need to throw anything out

and leave behind the stuff that just gets in the way: types,
encapsulation

Perl was not the only language pushing more complex regexps, but
probably the most influential.



Perl

Practical Extraction and Report Language

Pathologically Eclectic Rubbish Lister

Perl is the antithesis of everything the Programming Language
group does.

Most of my programming is in Perl.

General philosophy of Perl:

If you see a useful feature in another language, put it in Perl:
associative arrays, references, symbolic (call-by-name) references,
dynamic binding, static binding, dynamic code construction, object
orientation, . . .

and you never need to throw anything out

and leave behind the stuff that just gets in the way: types,
encapsulation

Perl was not the only language pushing more complex regexps, but
probably the most influential.



Perl

Practical Extraction and Report Language

Pathologically Eclectic Rubbish Lister

Perl is the antithesis of everything the Programming Language
group does. Most of my programming is in Perl.

General philosophy of Perl:

If you see a useful feature in another language, put it in Perl:
associative arrays, references, symbolic (call-by-name) references,
dynamic binding, static binding, dynamic code construction, object
orientation, . . .

and you never need to throw anything out

and leave behind the stuff that just gets in the way: types,
encapsulation

Perl was not the only language pushing more complex regexps, but
probably the most influential.



Perl

Practical Extraction and Report Language

Pathologically Eclectic Rubbish Lister

Perl is the antithesis of everything the Programming Language
group does. Most of my programming is in Perl.

General philosophy of Perl:

If you see a useful feature in another language, put it in Perl:
associative arrays, references, symbolic (call-by-name) references,
dynamic binding, static binding, dynamic code construction, object
orientation, . . .

and you never need to throw anything out

and leave behind the stuff that just gets in the way: types,
encapsulation

Perl was not the only language pushing more complex regexps, but
probably the most influential.



Perl

Practical Extraction and Report Language

Pathologically Eclectic Rubbish Lister

Perl is the antithesis of everything the Programming Language
group does. Most of my programming is in Perl.

General philosophy of Perl:

If you see a useful feature in another language, put it in Perl:
associative arrays, references, symbolic (call-by-name) references,
dynamic binding, static binding, dynamic code construction, object
orientation, . . .

and you never need to throw anything out

and leave behind the stuff that just gets in the way: types,
encapsulation

Perl was not the only language pushing more complex regexps, but
probably the most influential.



Perl

Practical Extraction and Report Language

Pathologically Eclectic Rubbish Lister

Perl is the antithesis of everything the Programming Language
group does. Most of my programming is in Perl.

General philosophy of Perl:

If you see a useful feature in another language, put it in Perl:
associative arrays, references, symbolic (call-by-name) references,
dynamic binding, static binding, dynamic code construction, object
orientation, . . .

and you never need to throw anything out

and leave behind the stuff that just gets in the way: types,
encapsulation

Perl was not the only language pushing more complex regexps, but
probably the most influential.



Perl

Practical Extraction and Report Language

Pathologically Eclectic Rubbish Lister

Perl is the antithesis of everything the Programming Language
group does. Most of my programming is in Perl.

General philosophy of Perl:

If you see a useful feature in another language, put it in Perl:
associative arrays, references, symbolic (call-by-name) references,
dynamic binding, static binding, dynamic code construction, object
orientation, . . .

and you never need to throw anything out

and leave behind the stuff that just gets in the way: types,
encapsulation

Perl was not the only language pushing more complex regexps, but
probably the most influential.



PCREs

Perl-Compatible Regular Expressions

Preposterously Convoluted Regular Expressions

have spread into many other places (thanks, Henry Spencer and
Phil Hazel) – even back into GNU grep.



PCREs

Perl-Compatible Regular Expressions

Preposterously Convoluted Regular Expressions

have spread into many other places (thanks, Henry Spencer and
Phil Hazel) – even back into GNU grep.



PCREs

Perl-Compatible Regular Expressions

Preposterously Convoluted Regular Expressions

have spread into many other places (thanks, Henry Spencer and
Phil Hazel) – even back into GNU grep.



Quantifier greediness

In real life, we don’t just match regexps, we look for substrings
matching them. Which substring?

Real-life regexps are non-deterministic, but with deterministic
non-determinism.

Consider <.*> to find an XML tag in
<irritating>spurious</irritating>angle brackets

fails because * is implemented as greedy (by everybody)

Could use <[^>]*>, but it’s easier to say
<.*?> with the non-greedy quantifier.

Is is obvious in general that constructs controlling the
back-tracking behaviour don’t increase power?



Quantifier greediness

In real life, we don’t just match regexps, we look for substrings
matching them. Which substring?

Real-life regexps are non-deterministic, but with deterministic
non-determinism.

Consider <.*> to find an XML tag in
<irritating>spurious</irritating>angle brackets

fails because * is implemented as greedy (by everybody)

Could use <[^>]*>, but it’s easier to say
<.*?> with the non-greedy quantifier.

Is is obvious in general that constructs controlling the
back-tracking behaviour don’t increase power?



Quantifier greediness

In real life, we don’t just match regexps, we look for substrings
matching them. Which substring?

Real-life regexps are non-deterministic, but with deterministic
non-determinism.

Consider <.*> to find an XML tag in
<irritating>spurious</irritating>angle brackets

fails because * is implemented as greedy (by everybody)

Could use <[^>]*>, but it’s easier to say
<.*?> with the non-greedy quantifier.

Is is obvious in general that constructs controlling the
back-tracking behaviour don’t increase power?



Quantifier greediness

In real life, we don’t just match regexps, we look for substrings
matching them. Which substring?

Real-life regexps are non-deterministic, but with deterministic
non-determinism.

Consider <.*> to find an XML tag in
<irritating>spurious</irritating>angle brackets

fails because * is implemented as greedy (by everybody)

Could use <[^>]*>, but it’s easier to say
<.*?> with the non-greedy quantifier.

Is is obvious in general that constructs controlling the
back-tracking behaviour don’t increase power?



Quantifier greediness

In real life, we don’t just match regexps, we look for substrings
matching them. Which substring?

Real-life regexps are non-deterministic, but with deterministic
non-determinism.

Consider <.*> to find an XML tag in
<irritating>spurious</irritating>angle brackets

fails because * is implemented as greedy (by everybody)

Could use <[^>]*>, but it’s easier to say
<.*?> with the non-greedy quantifier.

Is is obvious in general that constructs controlling the
back-tracking behaviour don’t increase power?



Back-references

One of the oldest power-increasing extensions.

Match (ignoring escapes) Javascript string: (["’]).*?\1

In that case, clearly just succinct.

But:

(a*)b\1 is not regular; and

(.*)\1 is not context-free.

On the other hand, I can’t see how to capture anbn just with
back-references (and the other stuff mentioned so far).

So what exactly is the power of (say) standard regular expressions
plus back-references?



Back-references

One of the oldest power-increasing extensions.

Match (ignoring escapes) Javascript string: (["’]).*?\1

In that case, clearly just succinct. But:

(a*)b\1 is not regular

; and

(.*)\1 is not context-free.

On the other hand, I can’t see how to capture anbn just with
back-references (and the other stuff mentioned so far).

So what exactly is the power of (say) standard regular expressions
plus back-references?



Back-references

One of the oldest power-increasing extensions.

Match (ignoring escapes) Javascript string: (["’]).*?\1

In that case, clearly just succinct. But:

(a*)b\1 is not regular; and

(.*)\1 is not context-free.

On the other hand, I can’t see how to capture anbn just with
back-references (and the other stuff mentioned so far).

So what exactly is the power of (say) standard regular expressions
plus back-references?



Back-references

One of the oldest power-increasing extensions.

Match (ignoring escapes) Javascript string: (["’]).*?\1

In that case, clearly just succinct. But:

(a*)b\1 is not regular; and

(.*)\1 is not context-free.

On the other hand, I can’t see how to capture anbn just with
back-references (and the other stuff mentioned so far).

So what exactly is the power of (say) standard regular expressions
plus back-references?



Look-around

Perl generalizes the zero-width assertions to arbitrary look-ahead
and fixed-width look-behind:

\d+(?=\w+) matches a string of digits followed by a word (without
including the word)

\d+(?![Ee]-?\d+) matches a number not followed by an
exponent. (Exercise: no, it doesn’t – what’s the bug?)

Look-behind: see title.

Note this allows intersection of (whole) regexps:
^(?=patt1$)patt2$

I think this adds succinctness, but no power.



Look-around

Perl generalizes the zero-width assertions to arbitrary look-ahead
and fixed-width look-behind:

\d+(?=\w+) matches a string of digits followed by a word (without
including the word)

\d+(?![Ee]-?\d+) matches a number not followed by an
exponent. (Exercise: no, it doesn’t – what’s the bug?)

Look-behind: see title.

Note this allows intersection of (whole) regexps:
^(?=patt1$)patt2$

I think this adds succinctness, but no power.



Look-around

Perl generalizes the zero-width assertions to arbitrary look-ahead
and fixed-width look-behind:

\d+(?=\w+) matches a string of digits followed by a word (without
including the word)

\d+(?![Ee]-?\d+) matches a number not followed by an
exponent. (Exercise: no, it doesn’t – what’s the bug?)

Look-behind: see title.

Note this allows intersection of (whole) regexps:
^(?=patt1$)patt2$

I think this adds succinctness, but no power.



Look-around

Perl generalizes the zero-width assertions to arbitrary look-ahead
and fixed-width look-behind:

\d+(?=\w+) matches a string of digits followed by a word (without
including the word)

\d+(?![Ee]-?\d+) matches a number not followed by an
exponent. (Exercise: no, it doesn’t – what’s the bug?)

Look-behind: see title.

Note this allows intersection of (whole) regexps:
^(?=patt1$)patt2$

I think this adds succinctness, but no power.



Backtracking control

Default (greedy) quantifiers:

foo.*ba matches foo bar baz

Non-greedy:

foo.*?ba matches foo bar baz

This relies on backtracking, which is expensive. Possessive
quantifiers a*+ forbid backtracking inside the a*.

More generally, (?>patt) cannot be backtracked into (but can be
backtracked over as a whole).

I think this only adds succinctness, but by now I have little idea. . .

Worse: you can insert backtracking control verbs at arbitrary
points in the expression.



Backtracking control

Default (greedy) quantifiers:

foo.*ba matches foo bar baz

Non-greedy:

foo.*?ba matches foo bar baz

This relies on backtracking, which is expensive. Possessive
quantifiers a*+ forbid backtracking inside the a*.

More generally, (?>patt) cannot be backtracked into (but can be
backtracked over as a whole).

I think this only adds succinctness, but by now I have little idea. . .

Worse: you can insert backtracking control verbs at arbitrary
points in the expression.



Backtracking control

Default (greedy) quantifiers:

foo.*ba matches foo bar baz

Non-greedy:

foo.*?ba matches foo bar baz

This relies on backtracking, which is expensive. Possessive
quantifiers a*+ forbid backtracking inside the a*.

More generally, (?>patt) cannot be backtracked into (but can be
backtracked over as a whole).

I think this only adds succinctness, but by now I have little idea. . .

Worse: you can insert backtracking control verbs at arbitrary
points in the expression.



Backtracking control

Default (greedy) quantifiers:

foo.*ba matches foo bar baz

Non-greedy:

foo.*?ba matches foo bar baz

This relies on backtracking, which is expensive. Possessive
quantifiers a*+ forbid backtracking inside the a*.

More generally, (?>patt) cannot be backtracked into (but can be
backtracked over as a whole).

I think this only adds succinctness, but by now I have little idea. . .

Worse: you can insert backtracking control verbs at arbitrary
points in the expression.



Backtracking control

Default (greedy) quantifiers:

foo.*ba matches foo bar baz

Non-greedy:

foo.*?ba matches foo bar baz

This relies on backtracking, which is expensive. Possessive
quantifiers a*+ forbid backtracking inside the a*.

More generally, (?>patt) cannot be backtracked into (but can be
backtracked over as a whole).

I think this only adds succinctness, but by now I have little idea. . .

Worse: you can insert backtracking control verbs at arbitrary
points in the expression.



Recursive regexps

To match balanced parentheses, of course:

\([^()]*+(?R)?[^()]*+\)

Or a(?R)?b to match anbn.



Recursive regexps

To match balanced parentheses, of course:

\([^()]*+(?R)?[^()]*+\)

Or a(?R)?b to match anbn.



What the heck . . .

(??{code})

inserts a dynamically computed sub-re (which knows what’s been
matched against so far).



Extracts from the manual
Regular expressions provide a terse and powerful program-
ming language. As with most other power tools, power
comes together with the ability to wreak havoc.

This document varies from difficult to understand to com-
pletely and utterly opaque. The wandering prose riddled
with jargon is hard to fathom in several places.



And finally. . .

For those who haven’t seen it before, this is the right regexp to
validate an email address (and it doesn’t even cope with
comments):
(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t]

)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:

\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(

?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[

\t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\0

31]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\

](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+

(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:

(?:\r\n)?[ \t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z

|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)

?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\

r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[

\t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)

?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t]

)*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[

\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*

)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t]

)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*)

*:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+

|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r

\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:

\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t

]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031

]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](

?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?

:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?

:\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?

:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?

[ \t]))*"(?:(?:\r\n)?[ \t])*)*:(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\]

\000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|

\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>

@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"

(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t]

)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\

".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?

:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[

\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?:[^()<>@,;:\\".\[\] \000-

\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(

?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,;

:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([

^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\"

.\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\

]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\

[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\

r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\]

\000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]

|\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \0

00-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\

.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,

;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?

:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*

(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".

\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[

^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]

]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)(?:,\s*(

?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\

".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(

?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[

\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t

])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t

])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?

:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|

\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?:

[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\

]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)*\<(?:(?:\r\n)

?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["

()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)

?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>

@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[

\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,

;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t]

)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\

".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)?

(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".

\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:

\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\[

"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])

*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])

+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\

.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z

|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*\>(?:(

?:\r\n)?[ \t])*))*)?;\s*)


