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Boolean operators – recap 2.1/17

The basic operators are ¬, ∧, and ∨.

By now you have several times seen → and ↔, and perhaps ⊕.
How many binary boolean operators are there?
Hardware folks like NAND and NOR, which we’ll write ∧ and ∨.

name sym t.t. a.k.a.
true > 1 1, top
false ⊥ 0 0, bottom

not ¬ 1 0 complement,¯

and ∧ 0 0
0 1 &, .,×

or ∨ 0 1
1 1 |,+

implies → 1 1
0 1 ≤

name sym t.t. a.k.a.

implied by ← 1 0
1 1 ≥

iff ↔ 1 0
0 1 =

xor ⊕ 0 1
1 0 6=, parity

nand ∧ 1 1
1 0

nor ∨ 1 0
0 0



Boolean operators – recap 2.2/17

The basic operators are ¬, ∧, and ∨.
By now you have several times seen → and ↔, and perhaps ⊕.

How many binary boolean operators are there?
Hardware folks like NAND and NOR, which we’ll write ∧ and ∨.

name sym t.t. a.k.a.
true > 1 1, top
false ⊥ 0 0, bottom

not ¬ 1 0 complement,¯

and ∧ 0 0
0 1 &, .,×

or ∨ 0 1
1 1 |,+

implies → 1 1
0 1 ≤

name sym t.t. a.k.a.

implied by ← 1 0
1 1 ≥

iff ↔ 1 0
0 1 =

xor ⊕ 0 1
1 0 6=, parity

nand ∧ 1 1
1 0

nor ∨ 1 0
0 0



Boolean operators – recap 2.3/17

The basic operators are ¬, ∧, and ∨.
By now you have several times seen → and ↔, and perhaps ⊕.
How many binary boolean operators are there?

Hardware folks like NAND and NOR, which we’ll write ∧ and ∨.

name sym t.t. a.k.a.
true > 1 1, top
false ⊥ 0 0, bottom

not ¬ 1 0 complement,¯

and ∧ 0 0
0 1 &, .,×

or ∨ 0 1
1 1 |,+

implies → 1 1
0 1 ≤

name sym t.t. a.k.a.

implied by ← 1 0
1 1 ≥

iff ↔ 1 0
0 1 =

xor ⊕ 0 1
1 0 6=, parity

nand ∧ 1 1
1 0

nor ∨ 1 0
0 0



Boolean operators – recap 2.4/17

The basic operators are ¬, ∧, and ∨.
By now you have several times seen → and ↔, and perhaps ⊕.
How many binary boolean operators are there?
Hardware folks like NAND and NOR, which we’ll write ∧ and ∨.

name sym t.t. a.k.a.
true > 1 1, top
false ⊥ 0 0, bottom

not ¬ 1 0 complement,¯

and ∧ 0 0
0 1 &, .,×

or ∨ 0 1
1 1 |,+

implies → 1 1
0 1 ≤

name sym t.t. a.k.a.

implied by ← 1 0
1 1 ≥

iff ↔ 1 0
0 1 =

xor ⊕ 0 1
1 0 6=, parity

nand ∧ 1 1
1 0

nor ∨ 1 0
0 0



Boolean operators – recap 2.5/17

The basic operators are ¬, ∧, and ∨.
By now you have several times seen → and ↔, and perhaps ⊕.
How many binary boolean operators are there?
Hardware folks like NAND and NOR, which we’ll write ∧ and ∨.

name sym t.t. a.k.a.
true > 1 1, top
false ⊥ 0 0, bottom

not ¬ 1 0 complement,¯

and ∧ 0 0
0 1 &, .,×

or ∨ 0 1
1 1 |,+

implies → 1 1
0 1 ≤

name sym t.t. a.k.a.

implied by ← 1 0
1 1 ≥

iff ↔ 1 0
0 1 =

xor ⊕ 0 1
1 0 6=, parity

nand ∧ 1 1
1 0

nor ∨ 1 0
0 0



Using boolean operators 3.1/17

Note that (→R) has
the special case

a � b

� a→ b

which ties down the
precise similarity
between � and →.

Everything we’ve done with boolean operators can be extended to
use →,↔ and others.
In the optional question of tutorial 5, you were asked for sequent
calculus rules for →. They are:

Γ, b � ∆ Γ � a, ∆

Γ, a→ b � ∆
(→L)

Γ, a � b, ∆

Γ � a→ b, ∆
(→R)

Rules for ↔ are even more obvious:

Γ, a→ b, b → a � ∆

Γ, a↔ b � ∆
(↔L)

Γ � a→ b, ∆ Γ � b → a, ∆

Γ � b ↔ a, ∆
(↔R)

Boring exercise: take all the stuff you’ve done in Haskell on WFFs
etc., and extend it for these operators, if you haven’t already.



Using boolean operators 3.2/17

Note that (→R) has
the special case

a � b

� a→ b

which ties down the
precise similarity
between � and →.

Everything we’ve done with boolean operators can be extended to
use →,↔ and others.
In the optional question of tutorial 5, you were asked for sequent
calculus rules for →. They are:

Γ, b � ∆ Γ � a, ∆

Γ, a→ b � ∆
(→L)

Γ, a � b, ∆

Γ � a→ b, ∆
(→R)

Rules for ↔ are even more obvious:

Γ, a→ b, b → a � ∆

Γ, a↔ b � ∆
(↔L)

Γ � a→ b, ∆ Γ � b → a, ∆

Γ � b ↔ a, ∆
(↔R)

Boring exercise: take all the stuff you’ve done in Haskell on WFFs
etc., and extend it for these operators, if you haven’t already.



Using boolean operators 3.3/17

Note that (→R) has
the special case

a � b

� a→ b

which ties down the
precise similarity
between � and →.

Everything we’ve done with boolean operators can be extended to
use →,↔ and others.
In the optional question of tutorial 5, you were asked for sequent
calculus rules for →. They are:

Γ, b � ∆ Γ � a, ∆

Γ, a→ b � ∆
(→L)

Γ, a � b, ∆

Γ � a→ b, ∆
(→R)

Rules for ↔ are even more obvious:

Γ, a→ b, b → a � ∆

Γ, a↔ b � ∆
(↔L)

Γ � a→ b, ∆ Γ � b → a, ∆

Γ � b ↔ a, ∆
(↔R)

Boring exercise: take all the stuff you’ve done in Haskell on WFFs
etc., and extend it for these operators, if you haven’t already.



Boolean algebra 4.1/17

This set of axioms is
far from minimal.
Astonishingly, this
single axiom suffices:
¬(¬(¬(a ∨ b) ∨ c) ∨
¬(a ∨ ¬(¬c ∨ ¬(c ∨
d)))) = c

https://doi.org/10.1023/
A:1020542009983

Algebra is about equations between things. These equations
characterize boolean logic and operators:

I Associativity: (a ∨ b) ∨ c = a ∨ (b ∨ c) and sim. for ∧

I Commutativity: a ∨ b = b ∨ a and sim. for ∧
I Absorption: a ∨ (a ∧ b) = a and vice versa
I Identity: a ∨ 0 = a and a ∧ 1 = a

I Distributivity: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and vice versa
I Complements: a ∨ ¬a = 1 and a ∧ ¬a = 0

Other convenient derived equations include:

I Negation cancellation: ¬¬a = a

I Zero/One: ¬1 = 0 and ¬0 = 1
I Simple absorption: a ∨ a = a and sim. for ∧
I De Morgan: ¬(a ∨ b) = ¬a ∧ ¬b and vice versa

https://doi.org/10.1023/A:1020542009983
https://doi.org/10.1023/A:1020542009983


Boolean algebra 4.2/17

This set of axioms is
far from minimal.
Astonishingly, this
single axiom suffices:
¬(¬(¬(a ∨ b) ∨ c) ∨
¬(a ∨ ¬(¬c ∨ ¬(c ∨
d)))) = c

https://doi.org/10.1023/
A:1020542009983

Algebra is about equations between things. These equations
characterize boolean logic and operators:

I Associativity: (a ∨ b) ∨ c = a ∨ (b ∨ c) and sim. for ∧
I Commutativity: a ∨ b = b ∨ a and sim. for ∧

I Absorption: a ∨ (a ∧ b) = a and vice versa
I Identity: a ∨ 0 = a and a ∧ 1 = a

I Distributivity: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and vice versa
I Complements: a ∨ ¬a = 1 and a ∧ ¬a = 0

Other convenient derived equations include:

I Negation cancellation: ¬¬a = a

I Zero/One: ¬1 = 0 and ¬0 = 1
I Simple absorption: a ∨ a = a and sim. for ∧
I De Morgan: ¬(a ∨ b) = ¬a ∧ ¬b and vice versa

https://doi.org/10.1023/A:1020542009983
https://doi.org/10.1023/A:1020542009983


Boolean algebra 4.3/17

This set of axioms is
far from minimal.
Astonishingly, this
single axiom suffices:
¬(¬(¬(a ∨ b) ∨ c) ∨
¬(a ∨ ¬(¬c ∨ ¬(c ∨
d)))) = c

https://doi.org/10.1023/
A:1020542009983

Algebra is about equations between things. These equations
characterize boolean logic and operators:

I Associativity: (a ∨ b) ∨ c = a ∨ (b ∨ c) and sim. for ∧
I Commutativity: a ∨ b = b ∨ a and sim. for ∧
I Absorption: a ∨ (a ∧ b) = a and vice versa

I Identity: a ∨ 0 = a and a ∧ 1 = a

I Distributivity: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and vice versa
I Complements: a ∨ ¬a = 1 and a ∧ ¬a = 0

Other convenient derived equations include:

I Negation cancellation: ¬¬a = a

I Zero/One: ¬1 = 0 and ¬0 = 1
I Simple absorption: a ∨ a = a and sim. for ∧
I De Morgan: ¬(a ∨ b) = ¬a ∧ ¬b and vice versa

https://doi.org/10.1023/A:1020542009983
https://doi.org/10.1023/A:1020542009983


Boolean algebra 4.4/17

This set of axioms is
far from minimal.
Astonishingly, this
single axiom suffices:
¬(¬(¬(a ∨ b) ∨ c) ∨
¬(a ∨ ¬(¬c ∨ ¬(c ∨
d)))) = c

https://doi.org/10.1023/
A:1020542009983

Algebra is about equations between things. These equations
characterize boolean logic and operators:

I Associativity: (a ∨ b) ∨ c = a ∨ (b ∨ c) and sim. for ∧
I Commutativity: a ∨ b = b ∨ a and sim. for ∧
I Absorption: a ∨ (a ∧ b) = a and vice versa
I Identity: a ∨ 0 = a and a ∧ 1 = a

I Distributivity: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and vice versa
I Complements: a ∨ ¬a = 1 and a ∧ ¬a = 0

Other convenient derived equations include:

I Negation cancellation: ¬¬a = a

I Zero/One: ¬1 = 0 and ¬0 = 1
I Simple absorption: a ∨ a = a and sim. for ∧
I De Morgan: ¬(a ∨ b) = ¬a ∧ ¬b and vice versa

https://doi.org/10.1023/A:1020542009983
https://doi.org/10.1023/A:1020542009983


Boolean algebra 4.5/17

This set of axioms is
far from minimal.
Astonishingly, this
single axiom suffices:
¬(¬(¬(a ∨ b) ∨ c) ∨
¬(a ∨ ¬(¬c ∨ ¬(c ∨
d)))) = c

https://doi.org/10.1023/
A:1020542009983

Algebra is about equations between things. These equations
characterize boolean logic and operators:

I Associativity: (a ∨ b) ∨ c = a ∨ (b ∨ c) and sim. for ∧
I Commutativity: a ∨ b = b ∨ a and sim. for ∧
I Absorption: a ∨ (a ∧ b) = a and vice versa
I Identity: a ∨ 0 = a and a ∧ 1 = a

I Distributivity: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and vice versa

I Complements: a ∨ ¬a = 1 and a ∧ ¬a = 0

Other convenient derived equations include:

I Negation cancellation: ¬¬a = a

I Zero/One: ¬1 = 0 and ¬0 = 1
I Simple absorption: a ∨ a = a and sim. for ∧
I De Morgan: ¬(a ∨ b) = ¬a ∧ ¬b and vice versa

https://doi.org/10.1023/A:1020542009983
https://doi.org/10.1023/A:1020542009983


Boolean algebra 4.6/17

This set of axioms is
far from minimal.
Astonishingly, this
single axiom suffices:
¬(¬(¬(a ∨ b) ∨ c) ∨
¬(a ∨ ¬(¬c ∨ ¬(c ∨
d)))) = c

https://doi.org/10.1023/
A:1020542009983

Algebra is about equations between things. These equations
characterize boolean logic and operators:

I Associativity: (a ∨ b) ∨ c = a ∨ (b ∨ c) and sim. for ∧
I Commutativity: a ∨ b = b ∨ a and sim. for ∧
I Absorption: a ∨ (a ∧ b) = a and vice versa
I Identity: a ∨ 0 = a and a ∧ 1 = a

I Distributivity: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and vice versa
I Complements: a ∨ ¬a = 1 and a ∧ ¬a = 0

Other convenient derived equations include:

I Negation cancellation: ¬¬a = a

I Zero/One: ¬1 = 0 and ¬0 = 1
I Simple absorption: a ∨ a = a and sim. for ∧
I De Morgan: ¬(a ∨ b) = ¬a ∧ ¬b and vice versa

https://doi.org/10.1023/A:1020542009983
https://doi.org/10.1023/A:1020542009983


Boolean algebra 4.7/17

This set of axioms is
far from minimal.
Astonishingly, this
single axiom suffices:
¬(¬(¬(a ∨ b) ∨ c) ∨
¬(a ∨ ¬(¬c ∨ ¬(c ∨
d)))) = c

https://doi.org/10.1023/
A:1020542009983

Algebra is about equations between things. These equations
characterize boolean logic and operators:

I Associativity: (a ∨ b) ∨ c = a ∨ (b ∨ c) and sim. for ∧
I Commutativity: a ∨ b = b ∨ a and sim. for ∧
I Absorption: a ∨ (a ∧ b) = a and vice versa
I Identity: a ∨ 0 = a and a ∧ 1 = a

I Distributivity: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and vice versa
I Complements: a ∨ ¬a = 1 and a ∧ ¬a = 0

Other convenient derived equations include:

I Negation cancellation: ¬¬a = a

I Zero/One: ¬1 = 0 and ¬0 = 1
I Simple absorption: a ∨ a = a and sim. for ∧
I De Morgan: ¬(a ∨ b) = ¬a ∧ ¬b and vice versa

https://doi.org/10.1023/A:1020542009983
https://doi.org/10.1023/A:1020542009983


Boolean algebra 4.8/17

This set of axioms is
far from minimal.
Astonishingly, this
single axiom suffices:
¬(¬(¬(a ∨ b) ∨ c) ∨
¬(a ∨ ¬(¬c ∨ ¬(c ∨
d)))) = c

https://doi.org/10.1023/
A:1020542009983

Algebra is about equations between things. These equations
characterize boolean logic and operators:

I Associativity: (a ∨ b) ∨ c = a ∨ (b ∨ c) and sim. for ∧
I Commutativity: a ∨ b = b ∨ a and sim. for ∧
I Absorption: a ∨ (a ∧ b) = a and vice versa
I Identity: a ∨ 0 = a and a ∧ 1 = a

I Distributivity: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and vice versa
I Complements: a ∨ ¬a = 1 and a ∧ ¬a = 0

Other convenient derived equations include:

I Negation cancellation: ¬¬a = a

I Zero/One: ¬1 = 0 and ¬0 = 1
I Simple absorption: a ∨ a = a and sim. for ∧
I De Morgan: ¬(a ∨ b) = ¬a ∧ ¬b and vice versa

https://doi.org/10.1023/A:1020542009983
https://doi.org/10.1023/A:1020542009983


Deriving De Morgan 5.1/17

An example of proofs using boolean algebra: prove
¬(a ∨ b) = ¬a ∧ ¬b from the six axioms.

Lemma If x ∨ y = 1 and x ∧ y = 0, then x = ¬y (and y = ¬x).
Proof ¬y = 1 ∧ ¬y by identity
= (x ∨ y) ∧ ¬y by assumption
= (x ∧ ¬y) ∨ (y ∧ ¬y) by distributivity
= (x ∧ ¬y) ∨ 0 by complements
= (x ∧ ¬y) ∨ (x ∧ y) by assumption
= x ∧ (¬y ∨ y) by distributivity
= x ∧ 1 by complements = x by identity.

By the lemma, to prove ¬(a ∨ b) = ¬a ∧ ¬b, it suffices to prove
(a ∨ b) ∨ (¬a ∧ ¬b) = 1 and (a ∨ b) ∧ (¬a ∧ ¬b) = 0. Both these
follow easily by distributivity, complement, associativy and
commutativity: e.g. the first is
(a∨b)∨(¬a∧¬b) = ((a∨b)∨¬a)∧((a∨b)∨¬b) = · · · = 1∧1 = 1.



Deriving De Morgan 5.2/17

An example of proofs using boolean algebra: prove
¬(a ∨ b) = ¬a ∧ ¬b from the six axioms.
Lemma If x ∨ y = 1 and x ∧ y = 0, then x = ¬y (and y = ¬x).
Proof ¬y = 1 ∧ ¬y by identity
= (x ∨ y) ∧ ¬y by assumption
= (x ∧ ¬y) ∨ (y ∧ ¬y) by distributivity
= (x ∧ ¬y) ∨ 0 by complements
= (x ∧ ¬y) ∨ (x ∧ y) by assumption
= x ∧ (¬y ∨ y) by distributivity
= x ∧ 1 by complements = x by identity.

By the lemma, to prove ¬(a ∨ b) = ¬a ∧ ¬b, it suffices to prove
(a ∨ b) ∨ (¬a ∧ ¬b) = 1 and (a ∨ b) ∧ (¬a ∧ ¬b) = 0. Both these
follow easily by distributivity, complement, associativy and
commutativity: e.g. the first is
(a∨b)∨(¬a∧¬b) = ((a∨b)∨¬a)∧((a∨b)∨¬b) = · · · = 1∧1 = 1.



Deriving De Morgan 5.3/17

An example of proofs using boolean algebra: prove
¬(a ∨ b) = ¬a ∧ ¬b from the six axioms.
Lemma If x ∨ y = 1 and x ∧ y = 0, then x = ¬y (and y = ¬x).
Proof ¬y = 1 ∧ ¬y by identity
= (x ∨ y) ∧ ¬y by assumption
= (x ∧ ¬y) ∨ (y ∧ ¬y) by distributivity
= (x ∧ ¬y) ∨ 0 by complements
= (x ∧ ¬y) ∨ (x ∧ y) by assumption
= x ∧ (¬y ∨ y) by distributivity
= x ∧ 1 by complements = x by identity.

By the lemma, to prove ¬(a ∨ b) = ¬a ∧ ¬b, it suffices to prove
(a ∨ b) ∨ (¬a ∧ ¬b) = 1 and (a ∨ b) ∧ (¬a ∧ ¬b) = 0. Both these
follow easily by distributivity, complement, associativy and
commutativity: e.g. the first is
(a∨b)∨(¬a∧¬b) = ((a∨b)∨¬a)∧((a∨b)∨¬b) = · · · = 1∧1 = 1.



Deriving De Morgan 5.4/17

An example of proofs using boolean algebra: prove
¬(a ∨ b) = ¬a ∧ ¬b from the six axioms.
Lemma If x ∨ y = 1 and x ∧ y = 0, then x = ¬y (and y = ¬x).
Proof ¬y = 1 ∧ ¬y by identity
= (x ∨ y) ∧ ¬y by assumption
= (x ∧ ¬y) ∨ (y ∧ ¬y) by distributivity
= (x ∧ ¬y) ∨ 0 by complements
= (x ∧ ¬y) ∨ (x ∧ y) by assumption
= x ∧ (¬y ∨ y) by distributivity
= x ∧ 1 by complements = x by identity.

By the lemma, to prove ¬(a ∨ b) = ¬a ∧ ¬b, it suffices to prove
(a ∨ b) ∨ (¬a ∧ ¬b) = 1 and (a ∨ b) ∧ (¬a ∧ ¬b) = 0. Both these
follow easily by distributivity, complement, associativy and
commutativity: e.g. the first is
(a∨b)∨(¬a∧¬b) = ((a∨b)∨¬a)∧((a∨b)∨¬b) = · · · = 1∧1 = 1.



Deriving De Morgan 5.5/17

An example of proofs using boolean algebra: prove
¬(a ∨ b) = ¬a ∧ ¬b from the six axioms.
Lemma If x ∨ y = 1 and x ∧ y = 0, then x = ¬y (and y = ¬x).
Proof ¬y = 1 ∧ ¬y by identity
= (x ∨ y) ∧ ¬y by assumption
= (x ∧ ¬y) ∨ (y ∧ ¬y) by distributivity
= (x ∧ ¬y) ∨ 0 by complements
= (x ∧ ¬y) ∨ (x ∧ y) by assumption
= x ∧ (¬y ∨ y) by distributivity
= x ∧ 1 by complements = x by identity.

By the lemma, to prove ¬(a ∨ b) = ¬a ∧ ¬b, it suffices to prove
(a ∨ b) ∨ (¬a ∧ ¬b) = 1 and (a ∨ b) ∧ (¬a ∧ ¬b) = 0. Both these
follow easily by distributivity, complement, associativy and
commutativity: e.g. the first is
(a∨b)∨(¬a∧¬b) = ((a∨b)∨¬a)∧((a∨b)∨¬b) = · · · = 1∧1 = 1.



Deriving De Morgan 5.6/17

An example of proofs using boolean algebra: prove
¬(a ∨ b) = ¬a ∧ ¬b from the six axioms.
Lemma If x ∨ y = 1 and x ∧ y = 0, then x = ¬y (and y = ¬x).
Proof ¬y = 1 ∧ ¬y by identity
= (x ∨ y) ∧ ¬y by assumption
= (x ∧ ¬y) ∨ (y ∧ ¬y) by distributivity
= (x ∧ ¬y) ∨ 0 by complements
= (x ∧ ¬y) ∨ (x ∧ y) by assumption
= x ∧ (¬y ∨ y) by distributivity
= x ∧ 1 by complements = x by identity.

By the lemma, to prove ¬(a ∨ b) = ¬a ∧ ¬b, it suffices to prove
(a ∨ b) ∨ (¬a ∧ ¬b) = 1 and (a ∨ b) ∧ (¬a ∧ ¬b) = 0. Both these
follow easily by distributivity, complement, associativy and
commutativity: e.g. the first is
(a∨b)∨(¬a∧¬b) = ((a∨b)∨¬a)∧((a∨b)∨¬b) = · · · = 1∧1 = 1.



Deriving De Morgan 5.7/17

An example of proofs using boolean algebra: prove
¬(a ∨ b) = ¬a ∧ ¬b from the six axioms.
Lemma If x ∨ y = 1 and x ∧ y = 0, then x = ¬y (and y = ¬x).
Proof ¬y = 1 ∧ ¬y by identity
= (x ∨ y) ∧ ¬y by assumption
= (x ∧ ¬y) ∨ (y ∧ ¬y) by distributivity
= (x ∧ ¬y) ∨ 0 by complements
= (x ∧ ¬y) ∨ (x ∧ y) by assumption
= x ∧ (¬y ∨ y) by distributivity
= x ∧ 1 by complements = x by identity.

By the lemma, to prove ¬(a ∨ b) = ¬a ∧ ¬b, it suffices to prove
(a ∨ b) ∨ (¬a ∧ ¬b) = 1 and (a ∨ b) ∧ (¬a ∧ ¬b) = 0. Both these
follow easily by distributivity, complement, associativy and
commutativity: e.g. the first is
(a∨b)∨(¬a∧¬b) = ((a∨b)∨¬a)∧((a∨b)∨¬b) = · · · = 1∧1 = 1.



Deriving De Morgan 5.8/17

An example of proofs using boolean algebra: prove
¬(a ∨ b) = ¬a ∧ ¬b from the six axioms.
Lemma If x ∨ y = 1 and x ∧ y = 0, then x = ¬y (and y = ¬x).
Proof ¬y = 1 ∧ ¬y by identity
= (x ∨ y) ∧ ¬y by assumption
= (x ∧ ¬y) ∨ (y ∧ ¬y) by distributivity
= (x ∧ ¬y) ∨ 0 by complements
= (x ∧ ¬y) ∨ (x ∧ y) by assumption
= x ∧ (¬y ∨ y) by distributivity
= x ∧ 1 by complements = x by identity.

By the lemma, to prove ¬(a ∨ b) = ¬a ∧ ¬b, it suffices to prove
(a ∨ b) ∨ (¬a ∧ ¬b) = 1 and (a ∨ b) ∧ (¬a ∧ ¬b) = 0. Both these
follow easily by distributivity, complement, associativy and
commutativity: e.g. the first is
(a∨b)∨(¬a∧¬b) = ((a∨b)∨¬a)∧((a∨b)∨¬b) = · · · = 1∧1 = 1.



Deriving De Morgan 5.9/17

An example of proofs using boolean algebra: prove
¬(a ∨ b) = ¬a ∧ ¬b from the six axioms.
Lemma If x ∨ y = 1 and x ∧ y = 0, then x = ¬y (and y = ¬x).
Proof ¬y = 1 ∧ ¬y by identity
= (x ∨ y) ∧ ¬y by assumption
= (x ∧ ¬y) ∨ (y ∧ ¬y) by distributivity
= (x ∧ ¬y) ∨ 0 by complements
= (x ∧ ¬y) ∨ (x ∧ y) by assumption
= x ∧ (¬y ∨ y) by distributivity
= x ∧ 1 by complements = x by identity.

By the lemma, to prove ¬(a ∨ b) = ¬a ∧ ¬b, it suffices to prove
(a ∨ b) ∨ (¬a ∧ ¬b) = 1 and (a ∨ b) ∧ (¬a ∧ ¬b) = 0. Both these
follow easily by distributivity, complement, associativy and
commutativity: e.g. the first is
(a∨b)∨(¬a∧¬b) = ((a∨b)∨¬a)∧((a∨b)∨¬b) = · · · = 1∧1 = 1.



Deriving De Morgan 5.10/17

An example of proofs using boolean algebra: prove
¬(a ∨ b) = ¬a ∧ ¬b from the six axioms.
Lemma If x ∨ y = 1 and x ∧ y = 0, then x = ¬y (and y = ¬x).
Proof ¬y = 1 ∧ ¬y by identity
= (x ∨ y) ∧ ¬y by assumption
= (x ∧ ¬y) ∨ (y ∧ ¬y) by distributivity
= (x ∧ ¬y) ∨ 0 by complements
= (x ∧ ¬y) ∨ (x ∧ y) by assumption
= x ∧ (¬y ∨ y) by distributivity
= x ∧ 1 by complements = x by identity.

By the lemma, to prove ¬(a ∨ b) = ¬a ∧ ¬b, it suffices to prove
(a ∨ b) ∨ (¬a ∧ ¬b) = 1 and (a ∨ b) ∧ (¬a ∧ ¬b) = 0. Both these
follow easily by distributivity, complement, associativy and
commutativity: e.g. the first is
(a∨b)∨(¬a∧¬b) = ((a∨b)∨¬a)∧((a∨b)∨¬b) = · · · = 1∧1 = 1.



Boolean algebra: implies and iff 6.1/17

We can add derived rules, as we did in sequent calculus:

I Bi-implication: a↔ b = (a→ b) ∧ (b → a)

I Implication: a→ b = ¬a ∨ b

We can use equations to convert a formula to CNF – but how do we
know what to do? This strategy works:

1. Get rid of →,↔ using Implication and Bi-implication.
2. Using the laws about ¬, push negations inwards to get

negation normal form.
3. Use distributivity to push ∨ inside ∧.

Progamming this was in FP tutorial 6! If you didn’t try the optional
and challenge parts, go back and try them now.
Doing this by hand tends to be boring: see textbook chapter 22 for
worked examples.



Boolean algebra: implies and iff 6.2/17

We can add derived rules, as we did in sequent calculus:

I Bi-implication: a↔ b = (a→ b) ∧ (b → a)

I Implication: a→ b = ¬a ∨ b

We can use equations to convert a formula to CNF – but how do we
know what to do?

This strategy works:

1. Get rid of →,↔ using Implication and Bi-implication.
2. Using the laws about ¬, push negations inwards to get

negation normal form.
3. Use distributivity to push ∨ inside ∧.

Progamming this was in FP tutorial 6! If you didn’t try the optional
and challenge parts, go back and try them now.
Doing this by hand tends to be boring: see textbook chapter 22 for
worked examples.



Boolean algebra: implies and iff 6.3/17

We can add derived rules, as we did in sequent calculus:

I Bi-implication: a↔ b = (a→ b) ∧ (b → a)

I Implication: a→ b = ¬a ∨ b

We can use equations to convert a formula to CNF – but how do we
know what to do? This strategy works:

1. Get rid of →,↔ using Implication and Bi-implication.

2. Using the laws about ¬, push negations inwards to get
negation normal form.

3. Use distributivity to push ∨ inside ∧.
Progamming this was in FP tutorial 6! If you didn’t try the optional
and challenge parts, go back and try them now.
Doing this by hand tends to be boring: see textbook chapter 22 for
worked examples.



Boolean algebra: implies and iff 6.4/17

We can add derived rules, as we did in sequent calculus:

I Bi-implication: a↔ b = (a→ b) ∧ (b → a)

I Implication: a→ b = ¬a ∨ b

We can use equations to convert a formula to CNF – but how do we
know what to do? This strategy works:

1. Get rid of →,↔ using Implication and Bi-implication.
2. Using the laws about ¬, push negations inwards to get

negation normal form.

3. Use distributivity to push ∨ inside ∧.
Progamming this was in FP tutorial 6! If you didn’t try the optional
and challenge parts, go back and try them now.
Doing this by hand tends to be boring: see textbook chapter 22 for
worked examples.



Boolean algebra: implies and iff 6.5/17

We can add derived rules, as we did in sequent calculus:

I Bi-implication: a↔ b = (a→ b) ∧ (b → a)

I Implication: a→ b = ¬a ∨ b

We can use equations to convert a formula to CNF – but how do we
know what to do? This strategy works:

1. Get rid of →,↔ using Implication and Bi-implication.
2. Using the laws about ¬, push negations inwards to get

negation normal form.
3. Use distributivity to push ∨ inside ∧.

Progamming this was in FP tutorial 6! If you didn’t try the optional
and challenge parts, go back and try them now.
Doing this by hand tends to be boring: see textbook chapter 22 for
worked examples.



Boolean algebra: implies and iff 6.6/17

We can add derived rules, as we did in sequent calculus:

I Bi-implication: a↔ b = (a→ b) ∧ (b → a)

I Implication: a→ b = ¬a ∨ b

We can use equations to convert a formula to CNF – but how do we
know what to do? This strategy works:

1. Get rid of →,↔ using Implication and Bi-implication.
2. Using the laws about ¬, push negations inwards to get

negation normal form.
3. Use distributivity to push ∨ inside ∧.

Progamming this was in FP tutorial 6! If you didn’t try the optional
and challenge parts, go back and try them now.
Doing this by hand tends to be boring: see textbook chapter 22 for
worked examples.



(Not a) Short Digression: Circuits 7.1/17

Ultimately, logic is implemented in silicon via transistors, referred to
as logic gates. Circuit designers draw gates like this:

AND OR NOT NAND NOR XOR

Gates (boolean operators) are connected by drawing wires:

b
a

c

is the circuit for (a ∧ b) ∨ ¬c .



Circuits can duplicate expressions 8.1/17

r
r ↔ x ∨ z
x ↔ ¬v
v ↔ a ∧ b
z ↔ ¬y
y ↔ v ∨ w
w ↔ ¬c

A circuit can use the same output more than once:

b
a

c

v

w

x

y z
r

is φ = ¬(a ∧ b) ∨ ¬((a ∧ b) ∨ ¬c))

How can we simulate re-use using only logic?

ψ = (¬v ∨ ¬(v ∨ ¬c)) ∧ (v ↔ a ∧ b) (or think: ¬v ∨ ¬(v ∨ ¬c) where v = a ∧ b)
φ and ψ are not equal, but they are equisatisfiable: φ has a
satisfying assignment iff ψ does, because any sat. asst. for φ gives
one for ψ and vice versa.
We can do this for all the intermediate values, and forget the
original formula.
Note that we include the variable for the whole formula: this
variable needs to be true.



Circuits can duplicate expressions 8.2/17

r
r ↔ x ∨ z
x ↔ ¬v
v ↔ a ∧ b
z ↔ ¬y
y ↔ v ∨ w
w ↔ ¬c

A circuit can use the same output more than once:

b
a

c

v

w

x

y z
r

is φ = ¬(a ∧ b) ∨ ¬((a ∧ b) ∨ ¬c))

How can we simulate re-use using only logic?
ψ = (¬v ∨ ¬(v ∨ ¬c)) ∧ (v ↔ a ∧ b) (or think: ¬v ∨ ¬(v ∨ ¬c) where v = a ∧ b)

φ and ψ are not equal, but they are equisatisfiable: φ has a
satisfying assignment iff ψ does, because any sat. asst. for φ gives
one for ψ and vice versa.
We can do this for all the intermediate values, and forget the
original formula.
Note that we include the variable for the whole formula: this
variable needs to be true.



Circuits can duplicate expressions 8.3/17

r
r ↔ x ∨ z
x ↔ ¬v
v ↔ a ∧ b
z ↔ ¬y
y ↔ v ∨ w
w ↔ ¬c

A circuit can use the same output more than once:

b
a

c

v

w

x

y z
r

is φ = ¬(a ∧ b) ∨ ¬((a ∧ b) ∨ ¬c))

How can we simulate re-use using only logic?
ψ = (¬v ∨ ¬(v ∨ ¬c)) ∧ (v ↔ a ∧ b) (or think: ¬v ∨ ¬(v ∨ ¬c) where v = a ∧ b)
φ and ψ are not equal, but they are equisatisfiable: φ has a
satisfying assignment iff ψ does, because any sat. asst. for φ gives
one for ψ and vice versa.

We can do this for all the intermediate values, and forget the
original formula.
Note that we include the variable for the whole formula: this
variable needs to be true.



Circuits can duplicate expressions 8.4/17

r
r ↔ x ∨ z
x ↔ ¬v
v ↔ a ∧ b
z ↔ ¬y
y ↔ v ∨ w
w ↔ ¬c

A circuit can use the same output more than once:

b
a

c

v

w

x

y z
r

is φ = ¬(a ∧ b) ∨ ¬((a ∧ b) ∨ ¬c))

How can we simulate re-use using only logic?
ψ = (¬v ∨ ¬(v ∨ ¬c)) ∧ (v ↔ a ∧ b) (or think: ¬v ∨ ¬(v ∨ ¬c) where v = a ∧ b)
φ and ψ are not equal, but they are equisatisfiable: φ has a
satisfying assignment iff ψ does, because any sat. asst. for φ gives
one for ψ and vice versa.
We can do this for all the intermediate values, and forget the
original formula.
Note that we include the variable for the whole formula: this
variable needs to be true.



The Tseytin transformation 9.1/17

Tseytin is an O(n)
conversion to an
equisatisfiable CNF
formula.
Unfortunately
CNF-SAT can still
be exponential – no
free lunch.
Final question for
you: how long does
it take to check
satisfiability of a
DNF formula?

does with formulae what we’ve just done with gates.
Introduce a new variable x for every subformula φ, and add a clause
saying x ↔ φ. For example:
(see live demo)

Having done that, we can convert all the Tseytin formulae to CNF
and conjoin them into one big CNF:
(see live demo)
That didn’t look very impressive. But as φ gets bigger, toCNF (φ)
may grow exponentially, while tseytinCNF (φ) grows linearly:
(see live demo)



The Tseytin transformation 9.2/17

Tseytin is an O(n)
conversion to an
equisatisfiable CNF
formula.
Unfortunately
CNF-SAT can still
be exponential – no
free lunch.
Final question for
you: how long does
it take to check
satisfiability of a
DNF formula?

does with formulae what we’ve just done with gates.
Introduce a new variable x for every subformula φ, and add a clause
saying x ↔ φ. For example:
(see live demo)
Having done that, we can convert all the Tseytin formulae to CNF
and conjoin them into one big CNF:
(see live demo)

That didn’t look very impressive. But as φ gets bigger, toCNF (φ)
may grow exponentially, while tseytinCNF (φ) grows linearly:
(see live demo)



The Tseytin transformation 9.3/17

Tseytin is an O(n)
conversion to an
equisatisfiable CNF
formula.
Unfortunately
CNF-SAT can still
be exponential – no
free lunch.
Final question for
you: how long does
it take to check
satisfiability of a
DNF formula?

does with formulae what we’ve just done with gates.
Introduce a new variable x for every subformula φ, and add a clause
saying x ↔ φ. For example:
(see live demo)
Having done that, we can convert all the Tseytin formulae to CNF
and conjoin them into one big CNF:
(see live demo)
That didn’t look very impressive. But as φ gets bigger, toCNF (φ)
may grow exponentially, while tseytinCNF (φ) grows linearly:
(see live demo)



The Tseytin transformation 9.4/17

Tseytin is an O(n)
conversion to an
equisatisfiable CNF
formula.
Unfortunately
CNF-SAT can still
be exponential – no
free lunch.
Final question for
you: how long does
it take to check
satisfiability of a
DNF formula?

does with formulae what we’ve just done with gates.
Introduce a new variable x for every subformula φ, and add a clause
saying x ↔ φ. For example:
(see live demo)
Having done that, we can convert all the Tseytin formulae to CNF
and conjoin them into one big CNF:
(see live demo)
That didn’t look very impressive. But as φ gets bigger, toCNF (φ)
may grow exponentially, while tseytinCNF (φ) grows linearly:
(see live demo)



2-CNF-SAT 10.1/17

2-CNF-SAT (or just 2-SAT) is the special case where every clause
has at most two literals, such as:

(¬A ∨ ¬C ) ∧ (¬B ∨ C ) ∧ (B ∨ A) ∧ (¬C ∨ D) ∧ (¬D ∨ ¬B)

Any 2-SAT problem can be solved in linear time.
They arise naturally in problems involving may/must/must not
relations between things: e.g. which courses you are able to take.
Sometimes unfortunate consequences arise from simple rules . . .



2-CNF-SAT 10.2/17

2-CNF-SAT (or just 2-SAT) is the special case where every clause
has at most two literals, such as:

(¬A ∨ ¬C ) ∧ (¬B ∨ C ) ∧ (B ∨ A) ∧ (¬C ∨ D) ∧ (¬D ∨ ¬B)

Any 2-SAT problem can be solved in linear time.

They arise naturally in problems involving may/must/must not
relations between things: e.g. which courses you are able to take.
Sometimes unfortunate consequences arise from simple rules . . .



2-CNF-SAT 10.3/17

2-CNF-SAT (or just 2-SAT) is the special case where every clause
has at most two literals, such as:

(¬A ∨ ¬C ) ∧ (¬B ∨ C ) ∧ (B ∨ A) ∧ (¬C ∨ D) ∧ (¬D ∨ ¬B)

Any 2-SAT problem can be solved in linear time.
They arise naturally in problems involving may/must/must not
relations between things: e.g. which courses you are able to take.
Sometimes unfortunate consequences arise from simple rules . . .



2-variable clauses 11.1/17

Any two-variable clause can be written in terms of ∨ and ¬, and
vice versa.
Rewriting the previous out of CNF gives:

¬(A ∧ C ) ∧ (B → C ) ∧ (A ∨ B) ∧ (C → D) ∧ ¬(D ∧ B)

which might represent the following rules:

1. You may not take both Astrology and Chiromancy
2. If you take Belomancy, you must take Chiromancy
3. You must take Astrology or Belomancy
4. If you take Chiromancy, you must take Dream Interpretation
5. You may not take both Dream Interpretation and Belomancy

What can you take?



Implication clauses 12.1/17
¬A ∨ ¬C is
symmetrical. Is
A→ ¬C
symmetrical?
(Remember back to
sequents and
contraposition. . . )

Remember barbara!
0→ anything, and
anything → 1

What should I do
with A, ¬A, and
¬C?

Any two-variable clause can also be written in terms of → and ¬:

(A→ ¬C ) ∧ (B → C ) ∧ (¬A→ B) ∧ (C → D) ∧ (D → ¬B)

This is useful because implication is transitive:
if B → C and C → D, then B → D

We can build a partial graph of implication between literals:

0 −→ B −→ C −→ D −→ ¬B −→ 1

This tells us a lot about satisfying assignments:

I If a literal is true, everything to the right must be true
I If it’s false, everything to the left must be false
I B must be false
I if C is true, so is D

Satisfying assignments are got from cutting the line somewhere,
which must be right of B . (And then dealing with the rest.)



Implication clauses 12.2/17
¬A ∨ ¬C is
symmetrical. Is
A→ ¬C
symmetrical?
(Remember back to
sequents and
contraposition. . . )
Remember barbara!

0→ anything, and
anything → 1

What should I do
with A, ¬A, and
¬C?

Any two-variable clause can also be written in terms of → and ¬:

(A→ ¬C ) ∧ (B → C ) ∧ (¬A→ B) ∧ (C → D) ∧ (D → ¬B)

This is useful because implication is transitive:
if B → C and C → D, then B → D

We can build a partial graph of implication between literals:

0 −→ B −→ C −→ D −→ ¬B −→ 1

This tells us a lot about satisfying assignments:

I If a literal is true, everything to the right must be true
I If it’s false, everything to the left must be false
I B must be false
I if C is true, so is D

Satisfying assignments are got from cutting the line somewhere,
which must be right of B . (And then dealing with the rest.)



Implication clauses 12.3/17
¬A ∨ ¬C is
symmetrical. Is
A→ ¬C
symmetrical?
(Remember back to
sequents and
contraposition. . . )
Remember barbara!
0→ anything, and
anything → 1

What should I do
with A, ¬A, and
¬C?

Any two-variable clause can also be written in terms of → and ¬:

(A→ ¬C ) ∧ (B → C ) ∧ (¬A→ B) ∧ (C → D) ∧ (D → ¬B)

This is useful because implication is transitive:
if B → C and C → D, then B → D

We can build a partial graph of implication between literals:

0 −→ B −→ C −→ D −→ ¬B −→ 1

This tells us a lot about satisfying assignments:

I If a literal is true, everything to the right must be true
I If it’s false, everything to the left must be false
I B must be false
I if C is true, so is D

Satisfying assignments are got from cutting the line somewhere,
which must be right of B . (And then dealing with the rest.)



Implication clauses 12.4/17
¬A ∨ ¬C is
symmetrical. Is
A→ ¬C
symmetrical?
(Remember back to
sequents and
contraposition. . . )
Remember barbara!
0→ anything, and
anything → 1

What should I do
with A, ¬A, and
¬C?

Any two-variable clause can also be written in terms of → and ¬:

(A→ ¬C ) ∧ (B → C ) ∧ (¬A→ B) ∧ (C → D) ∧ (D → ¬B)

This is useful because implication is transitive:
if B → C and C → D, then B → D

We can build a partial graph of implication between literals:

0 −→ B −→ C −→ D −→ ¬B −→ 1

This tells us a lot about satisfying assignments:
I If a literal is true, everything to the right must be true

I If it’s false, everything to the left must be false
I B must be false
I if C is true, so is D

Satisfying assignments are got from cutting the line somewhere,
which must be right of B . (And then dealing with the rest.)



Implication clauses 12.5/17
¬A ∨ ¬C is
symmetrical. Is
A→ ¬C
symmetrical?
(Remember back to
sequents and
contraposition. . . )
Remember barbara!
0→ anything, and
anything → 1

What should I do
with A, ¬A, and
¬C?

Any two-variable clause can also be written in terms of → and ¬:

(A→ ¬C ) ∧ (B → C ) ∧ (¬A→ B) ∧ (C → D) ∧ (D → ¬B)

This is useful because implication is transitive:
if B → C and C → D, then B → D

We can build a partial graph of implication between literals:

0 −→ B −→ C −→ D −→ ¬B −→ 1

This tells us a lot about satisfying assignments:
I If a literal is true, everything to the right must be true
I If it’s false, everything to the left must be false

I B must be false
I if C is true, so is D

Satisfying assignments are got from cutting the line somewhere,
which must be right of B . (And then dealing with the rest.)



Implication clauses 12.6/17
¬A ∨ ¬C is
symmetrical. Is
A→ ¬C
symmetrical?
(Remember back to
sequents and
contraposition. . . )
Remember barbara!
0→ anything, and
anything → 1

What should I do
with A, ¬A, and
¬C?

Any two-variable clause can also be written in terms of → and ¬:

(A→ ¬C ) ∧ (B → C ) ∧ (¬A→ B) ∧ (C → D) ∧ (D → ¬B)

This is useful because implication is transitive:
if B → C and C → D, then B → D

We can build a partial graph of implication between literals:

0 −→ B −→ C −→ D −→ ¬B −→ 1

This tells us a lot about satisfying assignments:
I If a literal is true, everything to the right must be true
I If it’s false, everything to the left must be false
I B must be false

I if C is true, so is D

Satisfying assignments are got from cutting the line somewhere,
which must be right of B . (And then dealing with the rest.)



Implication clauses 12.7/17
¬A ∨ ¬C is
symmetrical. Is
A→ ¬C
symmetrical?
(Remember back to
sequents and
contraposition. . . )
Remember barbara!
0→ anything, and
anything → 1

What should I do
with A, ¬A, and
¬C?

Any two-variable clause can also be written in terms of → and ¬:

(A→ ¬C ) ∧ (B → C ) ∧ (¬A→ B) ∧ (C → D) ∧ (D → ¬B)

This is useful because implication is transitive:
if B → C and C → D, then B → D

We can build a partial graph of implication between literals:

0 −→ B −→ C −→ D −→ ¬B −→ 1

This tells us a lot about satisfying assignments:
I If a literal is true, everything to the right must be true
I If it’s false, everything to the left must be false
I B must be false
I if C is true, so is D

Satisfying assignments are got from cutting the line somewhere,
which must be right of B . (And then dealing with the rest.)



Implication clauses 12.8/17
¬A ∨ ¬C is
symmetrical. Is
A→ ¬C
symmetrical?
(Remember back to
sequents and
contraposition. . . )
Remember barbara!
0→ anything, and
anything → 1

What should I do
with A, ¬A, and
¬C?

Any two-variable clause can also be written in terms of → and ¬:

(A→ ¬C ) ∧ (B → C ) ∧ (¬A→ B) ∧ (C → D) ∧ (D → ¬B)

This is useful because implication is transitive:
if B → C and C → D, then B → D

We can build a partial graph of implication between literals:

0 −→ B −→ C −→ D −→ ¬B −→ 1

This tells us a lot about satisfying assignments:
I If a literal is true, everything to the right must be true
I If it’s false, everything to the left must be false
I B must be false
I if C is true, so is D

Satisfying assignments are got from cutting the line somewhere,
which must be right of B . (And then dealing with the rest.)



The Arrow Rule 13.1/17

A cut is a set of
edges which, when
deleted, cut the
graph in two.
A valid cut must
separate 0 and 1.

says that if we draw the full graph of implications, any valid cut
through the graph gives a satisfying assignment: literals above the
cut are true, those below are false. Another example:

(¬R ∨ Q) ∧ (¬R ∨ S) equiv (R → Q) ∧ (R → S)

1

Q S

R

0

There are five satisfying assignments, one for each valid cut.



The Arrow Rule 13.2/17

A cut is a set of
edges which, when
deleted, cut the
graph in two.
A valid cut must
separate 0 and 1.

says that if we draw the full graph of implications, any valid cut
through the graph gives a satisfying assignment: literals above the
cut are true, those below are false. Another example:

(¬R ∨ Q) ∧ (¬R ∨ S) equiv (R → Q) ∧ (R → S)

1

Q S

R

0

There are five satisfying assignments, one for each valid cut.



The Arrow Rule 13.3/17

A cut is a set of
edges which, when
deleted, cut the
graph in two.
A valid cut must
separate 0 and 1.

says that if we draw the full graph of implications, any valid cut
through the graph gives a satisfying assignment: literals above the
cut are true, those below are false. Another example:

(¬R ∨ Q) ∧ (¬R ∨ S) equiv (R → Q) ∧ (R → S)

1

Q S

R

0

There are five satisfying assignments, one for each valid cut.



The Arrow Rule 13.4/17

A cut is a set of
edges which, when
deleted, cut the
graph in two.
A valid cut must
separate 0 and 1.

says that if we draw the full graph of implications, any valid cut
through the graph gives a satisfying assignment: literals above the
cut are true, those below are false. Another example:

(¬R ∨ Q) ∧ (¬R ∨ S) equiv (R → Q) ∧ (R → S)

1

Q S

R

0

There are five satisfying assignments, one for each valid cut.



The Arrow Rule 13.5/17

A cut is a set of
edges which, when
deleted, cut the
graph in two.
A valid cut must
separate 0 and 1.

says that if we draw the full graph of implications, any valid cut
through the graph gives a satisfying assignment: literals above the
cut are true, those below are false. Another example:

(¬R ∨ Q) ∧ (¬R ∨ S) equiv (R → Q) ∧ (R → S)

1

Q S

R

0

There are five satisfying assignments, one for each valid cut.



The Arrow Rule 13.6/17

A cut is a set of
edges which, when
deleted, cut the
graph in two.
A valid cut must
separate 0 and 1.

says that if we draw the full graph of implications, any valid cut
through the graph gives a satisfying assignment: literals above the
cut are true, those below are false. Another example:

(¬R ∨ Q) ∧ (¬R ∨ S) equiv (R → Q) ∧ (R → S)

1

Q S

R

0

There are five satisfying assignments, one for each valid cut.



The Arrow Rule 13.7/17

A cut is a set of
edges which, when
deleted, cut the
graph in two.
A valid cut must
separate 0 and 1.

says that if we draw the full graph of implications, any valid cut
through the graph gives a satisfying assignment: literals above the
cut are true, those below are false. Another example:

(¬R ∨ Q) ∧ (¬R ∨ S) equiv (R → Q) ∧ (R → S)

1

Q S

R

0

There are five satisfying assignments, one for each valid cut.



Counting assignments 14.1/17

1

D

C

E

B

A

0

A more complex example:

(A→ B) ∧ (B → C ) ∧ (C → D) ∧ (A→ E ) ∧ (E → D)

There are eight ways to cut this.
We can count cuts thus:

I one cut above D

I cuts across the pentagon: 2 ways to cut the right side, 3 ways
to cut the left, so 6

I one cut below A

For an even more complicated example, see the textbook (Chapter
23, p. 252).
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What happens with formulae that have A and ¬A (like the very first
one)? Such as:

(A→ B) ∧ (B → C ) ∧ (C → D) ∧ (A→ ¬B) ∧ (¬B → D)

A valid cut must separate complementary literals, so only 3 cuts
survive.
Note A→ ¬B is the same as B → ¬A (contraposition), so
sometimes you can remove complementary literals. This makes
thing easier!
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It’s quite possible for the implication graph to contain cycles. For
example:

(A→ B) ∧ (B → C ) ∧ (C → ¬A) ∧ (¬A→ D) ∧ (D → A)

Every literal in a cycle must take the same value, so:
A valid cut must not cut a cycle.
In this is example, the cycle contains complementary literals, so
must be cut! There is no satisfying assignment.
Sometimes cycles can be removed by taking the contrapositive. Go
back to the first example (slide 12) and complete it both with and
without a cycle.
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Summary 17.1/17

Drawing the implication graph and counting valid cuts lets us count
satisfying assignments of 2-SAT formulae.
A valid cut must:

I separate 0 and 1
I separate complementary literals
I not cut a cycle

Why do we care? It turns out that #2-SAT (as it is known) has
application in statistical physics and artificial intelligence. It is also
of theoretical interest in several ways.
(There is one quirk we haven’t considered. What if the implication
graph is non-planar? See the book for how to deal with that.)
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