Testing the Hard .f__.
Stuff and Staying
Sane 4

John Hughes & 4

QuviQ @ cHawmers

Why is testing hard?

O(n})tbsstcaasss

—4 tests per

tpi%tl@?& S

Don’t write tests!

Generate them

QuickCheck

A minimal failing
example

Example: a Circular Buffer

State Machine Models
Erlang

©-0-0-0

*tcondltlo ErIJg

Model Model Model Model
state state state state

Erlang

Example

0-6-0-6-0
111l
0-0-0-0-0

Code Fragments: specifying get

get_pre(S) ->
S#state.ptr /= undefined andalso Precondition
Sttstate.contents /= [].

State

get_next(S,_Value,_Args) -> transition
Sttstate{contents=t|(S#state.contents)}.

get_post(S,_Args,Res) -> Postcondition
eq(Res,hd(S#state.contents)).

Time for some tests!

Lessons

* The same property can find many different
bugs

* Minimal failing tests make diagnosis easy

Noise

AUT.@) SAH AUTOMOTIVE OPEN SYSTEM ARCHITECTURE

Doing it
for real...

Diagnostic
cluster

Theory

Car manufacturers should be
able to buy code from different
providers and have them work

seamlessly together

Practice

VOLVO's experience has been
that this is often not the case

A Bug in a vendor’s CAN stack

1 sent

N\

send priority 1

sending 1

>

send priority 2

send priority 3

tx_confirm

N\

‘

__queued

sending 3

>

18

CAN bus identifiers determine bus priority

StandardCAN Id

The Problem

11 bits

ExtendedCAN Id

\

1 extended
0 standard

unit32

29 bits

A Bug in a vendor’s CAN stack

i) sending 1

send priority 1 S

|S—

send priority 2
P e __queued

send priority 3

1 sent i , 1 sending 3
| tx_confirm

\. W

>

Failed to mask off the top bit before
comparing priorities 20

3,000 pages of specifications
20,000 lines of QuickCheck

1,000,000 Loc, 6 suppliers
200 problems

100 problems in the standard
10X shorter test code

"We know there is a lurking bug somewhere
in the dets code. We have got 'bad object’
and 'premature eof' every other month the
last year. We have not been able to track the
bug down since the dets files is repaired
automatically next time it is opened.”

Tobbe Tornqvist, Klarna, 2007

What is it?

Wklarna
Application Invoicing services for web shops

Distributed database:
Mnesia transactions, distribution,
replication

Dets Tuple storage

O
@ Race

File system conditions?

Imagine Testing This...

dispenser:take ticket()

dispenser:reset()

A Unit Test in Erlang

test dispenser() ->

k = reset(),
= take ticket(),
take ticket(),
take ticket(),
reset (),
take ticket().

k

°
1
2 =
3
o
1

Expected

results

Modelling the dispenser
©-0-0-~0
P 1 11
0-0-0-0

A Parallel Unit Test
-

* Three possible correct
outcomes!

Another Parallel Test

* 30 possible correct outcomes!

Deciding a Parallel Test

=
.9
0-9-0-0

Let’s run some tests

take ticket() ->

. N = read()
Prefix: .
ret write(N+1),
Parallel: N+1.

1. dispenser:take_ticket() --> 1
2. dispenser:take ticket() --> 1

Result: no_possible_interleaving

dets

* Tuple store:
{Key, Valuel, Value2...}
* Operations:
— insert(Table,ListOfTuples)

— delete(Table,Key)
— insert_new(Table,ListOfTuples)

e Model:

— List of tuples (almost)

QuickCheck SpeC|f|ct|on

File Edit Options Buffers Tools
QuickCheck Erlang Help

Deldx B@E s
$EDRE XD

> 6,000
LOC

Bug #1
insert_new(Name, Objects) -> Bool

Prefix:

Types:
open file (det: yP

Name = name()
Objects = object() | [object()]

Parallel: Bool = bOO'()

1. insert(dets t:
2. insert new(dets_ table, []) --> ok

Result: no possible interleaving

Bug #2

Prefix:
open file(dets table, [{type,set}]) --> dets table

Parallel:
l. insert(dets table,{0,0}) --> ok

2. insert new(dets table, {0,0}) --> ..time out..

=ERROR REPORT====4-0ct-2010::17:08:21 ===
** dets: Bug was found when accessing table dets_table

Bug #3

Prefix:
open file(dets table, [{type,set}]) --> dets table

Parallel:
1. open file(dets table, [{type,set}]) --> dets table

2. insert(dets table,{0,0}) --> ok
get contents(dets table) --> []

Result: no possible interleaving

Is the file corrupt?

Bug #4

Prefix:
open file(dets_ table, [{type,bag}]) --> dets_table
close (dets_table) --> ok
open file(dets_ table, [{type,bag}]) --> dets_ table

Parallel:
1. lookup(dets table,0) --> []

2. insert(dets_table, {0,0}) --> ok
3. insert(dets_table, {0,0}) --> ok

Result: ok

premature eof

Bug #5

Prefix:
open file(dets_ table, [{type,set}]) --> dets_ table
insert (dets table,[{1,0}]) --> ok

Parallel:
1. lookup(dets table,0) --> []
delete (dets_table,1l) --> ok
2. open file(dets table,[{type,set}]) --> dets table

Result: ok
false

bad object

"We know there is a lurking bug somewhere

in the dets code. We have got 'bad object’
and '‘premature eof' every other month the

last year.”

Tobbe Tornqvist, Klarna, 2007

[

_

Each bug fixed the day after
reporting the failing case

~

J

Before

N

7

* Files over 1GB? * Database with one
|
* Rehashing? record!
| * 5—6 callsto
* > 6 weeks of effort! reproduce

e <1 day to fix

Property Based Testing

...finds more bugs with less effort!

Don’t write tests...

Generate them!

What does it feel like?

Docs

Properties vs test cases

Code sizes for the Flexray interface:

15000
10000 - M TTCN-3 test
cases
5000 - B QuickCheck
0 and Erlang

Lines of code

9x smaller code! ...and it tests more!

Properties vs implementations

25000

20000
15000
10000

5000

M Code
B QuickCheck

O |
CAN DEM FlexRay COM

The test code is 3—6x smaller than the
implementation

	Testing the Hard Stuff and Staying Sane
	Why is testing hard?
	Don’t write tests!
	QuickCheck
	Example: a Circular Buffer
	State Machine Models
	Example
	Code Fragments: specifying get
	Time for some tests!
	Lessons
	Bildnummer 14
	Doing it for real…
	Theory
	Practice
	A Bug in a vendor’s CAN stack
	The Problem
	A Bug in a vendor’s CAN stack
	Bildnummer 21
	Bildnummer 22
	What is it?
	Imagine Testing This…
	A Unit Test in Erlang
	Modelling the dispenser
	A Parallel Unit Test
	Another Parallel Test
	Deciding a Parallel Test
	Let’s run some tests
	Bildnummer 31
	dets
	QuickCheck Specification
	Bug #1
	Bug #2
	Bug #3
	Is the file corrupt?
	Bug #4
	Bug #5
	Bildnummer 40
	Before
	Property Based Testing
	Don’t write tests…��Generate them!
	What does it feel like?
	Properties vs test cases
	Properties vs implementations

