
Informatics 1
Functional Programming

Lectures 19–20

IO and Monads

Sam Lindley
The University of Edinburgh

Part I

The Mind-Body Problem

The Mind-Body Problem

Part II

Commands

Print a character

putChar :: Char -> IO ()

For instance,

putChar '!'

denotes the command that, if it is ever performed, will print an exclamation mark.

Combine two commands

(>>) :: IO () -> IO () -> IO ()

For instance,

putChar '?' >> putChar '!'

denotes the command that, if it is ever performed, prints a question mark followed
by an exclamation mark.

Do nothing

done :: IO ()

The term

done

denotes the command that, if it is ever performed, won’t do anything.

That is not quite the same as doing nothing! Compare thinking about doing
nothing to actually doing nothing: they are distinct enterprises.

Print a string

putStr :: String -> IO ()
putStr [] = done
putStr (x:xs) = putChar x >> putStr xs

So

putStr "?!"

is equivalent to

putChar '?' >> (putChar '!' >> done)

and both denote a command that, if it is ever performed, prints a question mark
followed by an exclamation mark.

Higher-order functions

More compactly, we can define putStr as follows.

putStr :: String -> IO ()
putStr = foldr (>>) done . map putChar

The operator >> has identity done and is associative.

m >> done = m
done >> m = m
(m >> n) >> o = m >> (n >> o)

Main

By now you may be desperate to know how is a command ever performed? Here
is the file Confused.hs:

module Confused where
main :: IO ()
main = putStr "?!"

Running this program prints an indicator of perplexity:

$ runghc Confused.hs
?!$

Thus main is the link from Haskell’s mind to Haskell’s body — the analogue of
Descartes’s pineal gland.

Print a string followed by a newline

putStrLn :: String -> IO ()
putStrLn xs = putStr xs >> putChar '\n'

Here is the file ConfusedLn.hs:

module ConfusedLn where
main :: IO ()
main = putStrLn "?!"

This prints its result more neatly:

$ runghc ConfusedLn.hs
?!
$

Part III

Equational reasoning

Equational reasoning lost

In languages with side effects, this program prints “haha” as a side effect.

print "ha"; print "ha"

But this program only prints “ha” as a side effect.

let x = print "ha" in x; x

This program again prints “haha” as a side effect.

let f () = print "ha" in f (); f ()

Equational reasoning regained

In Haskell, the term

(1+2) * (1+2)

and the term

let x = 1+2 in x * x

are equivalent (and both evaluate to 9).

In Haskell, the term

putStr "ha" >> putStr "ha"

and the term

let m = putStr "ha" in m >> m

are also entirely equivalent (and both print "haha").

Part IV

Commands with values

Read a character

Previously, we wrote IO () for the type of commands that yield no value.

Here, () is the trivial type that contains just one value, which is also written ().

We write IO Char for the type of commands that yield a value of type Char.

Here is a command to read a character.

getChar :: IO Char

Performing the command getChar when the input contains "abc" yields the
value 'a' and remaining input "bc".

Do nothing and return a value

More generally, we write IO a for commands that return a value of type a.

The command

return :: a -> IO a

is similar to done, in that it does nothing, but it also returns the given value.

Performing the command

return [] :: IO String

when the input contains "bc" yields the value [] and an unchanged input "bc".

Combining commands with values

We combine command with an operator written >>= and pronounced “bind”.

(>>=) :: IO a -> (a -> IO b) -> IO b

For example, performing the command

getChar >>= \x -> putChar (toUpper x)

when the input is "abc" produces the output "A", and the remaining input is
"bc".

The “bind” operator in detail

(>>=) :: IO a -> (a -> IO b) -> IO b

If

m :: IO a

is a command yielding a value of type a, and

k :: a -> IO b

is a function from a value of type a to a command yielding a value of type b, then

m >>= k :: IO b

is the command that, if it is ever performed, behaves as follows:

first perform command m yielding a value x of type a;
then perform command k x yielding a value y of type b;

then yield the final value y.

Reading a line

Here is a program to read the input until a newline is encountered, and to return a
list of the values read.

getLine :: IO String
getLine = getChar >>= \x ->

if x == '\n' then
return []

else
getLine >>= \xs ->
return (x:xs)

For example, given the input "abc\ndef" This returns the string "abc" and
the remaining input is "def".

Commands as a special case

The general operations on commands are:

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

The command done is a special case of return,
and the operator >> is a special case of >>=.

done :: IO ()
done = return ()

(>>) :: IO () -> IO () -> IO ()
m >> n = m >>= \() -> n

Echoing input to output

This program echoes its input to its output, putting everything in upper case, until
an empty line is entered.

echo :: IO ()
echo = getLine >>= \line ->

if line == "" then
return ()

else
putStrLn (map toUpper line) >>
echo

main :: IO ()
main = echo

Testing it out

$ runghc Echo.hs
This is a test.
THIS IS A TEST.
It is only a test.
IT IS ONLY A TEST.
Were this a real emergency, you'd be dead now.
WERE THIS A REAL EMERGENCY, YOU'D BE DEAD NOW.

$

Part V

“Do” notation

Reading a line in “do” notation

getLine :: IO String
getLine = getChar >>= \x ->

if x == '\n' then
return []

else
getLine >>= \xs ->
return (x:xs)

is equivalent to

getLine :: IO String
getLine = do {

x <- getChar;
if x == '\n' then

return []
else do {

xs <- getLine;
return (x:xs)

}
}

Echoing in “do” notation

echo :: IO ()
echo = getLine >>= \line ->

if line == "" then
return ()

else
putStrLn (map toUpper line) >>
echo

is equivalent to

echo :: IO ()
echo = do {

line <- getLine;
if line == "" then

return ()
else do {

putStrLn (map toUpper line);
echo

}
}

“Do” notation in general

Each line x <- e; ... becomes e >>= \x -> ...

Each line e; ... becomes e >> ...

For example,

do { x1 <- e1;
x2 <- e2;
e3;
x4 <- e4;
e5;
e6 }

is equivalent to

e1 >>= \x1 ->
e2 >>= \x2 ->
e3 >>
e4 >>= \x4 ->
e5 >>
e6

Part VI

Monads

Substitution

We write n[x := v] to stand for

term n with variable x replaced by value v.

For example, if n is x * x and x is x and v is 3,

(x * x) [x := 3] = 3 * 3

The beta law, which substitutes an actual parameter for a formal parameter, is

(\x -> n) v = n [x := v]

For instance,

(\x -> x * x) 3 = (x * x) [x := 3] = 3 * 3

Monoids

A monoid is a pair of an operator (⊕) and a value u, where the operator has the
value as identity and is associative.

u ⊕ x = x
x ⊕ u = x
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

Examples of monoids:

(+) and 0
(*) and 1

(||) and False
(&&) and True
(++) and []

(>>) and done

Monads

We know that (>>) and done satisfy the laws of a monoid.

done >> m = m
m >> done = m
(m >> n) >> o = m >> (n >> o)

Similarly, (>>=) and return satisfy the laws of a monad.

return v >>= \x -> m = m [x := v]
m >>= \x -> return x = m
(m >>= \x -> n) >>= \y-> o = m >>= \x -> (n >>= \y -> o)

Part VII

The monad of lists

The monad of lists

In the standard prelude:
class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

instance Monad [] where

return :: a -> [a]
return x = [x]

(>>=) :: [a] -> (a -> [b]) -> [b]
m >>= k = [y | x <- m, y <- k x]

Equivalently, we can define:
[] >>= k = []
(x:xs) >>= k = (k x) ++ (xs >>= k)

or
m >>= k = concat (map k m)

‘Do’ notation and the monad of lists

pairs :: Int -> [(Int, Int)]
pairs n = [(i,j) | i <- [1..n], j <- [(i+1)..n]]

is equivalent to

pairs' :: Int -> [(Int, Int)]
pairs' n = do {

i <- [1..n];
j <- [(i+1)..n];
return (i,j)

}

For example,

$ ghci Pairs
GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
Pairs> pairs 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
Pairs> pairs' 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

Monads with plus

In the standard prelude:

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

instance MonadPlus [] where

mzero :: [a]
mzero = []

mplus :: [a] -> [a] -> [a]
mplus = (++)

guard :: MonadPlus m => Bool -> m ()
guard False = mzero
guard True = return ()

msum :: MonadPlus m => [m a] -> m a
msum = foldr mplus mzero

Using guards

pairs'' :: Int -> [(Int, Int)]
pairs'' n = [(i,j) | i <- [1..n], j <- [1..n], i < j]

is equivalent to

pairs''' :: Int -> [(Int, Int)]
pairs''' n = do {

i <- [1..n];
j <- [1..n];
guard (i < j);
return (i,j)

}

For example,

$ ghci Pairs
GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
Pairs> pairs'' 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
Pairs> pairs''' 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

Part VIII

Parsers

Parser type

First attempt:

type Parser a = String -> a

Second attempt:

type Parser a = String -> (a, String)

Third attempt:

type Parser a = String -> [(a, String)]

A parser for things
is a function from strings

to lists of pairs
Of things and strings

—Graham Hutton

Module Parser

module Parser(Parser,apply,parse,char,spot,token,
star,plus,parseInt) where

import Char
import Monad

-- The type of parsers
data Parser a = Parser (String -> [(a, String)])

-- Apply a parser
apply :: Parser a -> String -> [(a, String)]
apply (Parser f) s = f s

-- Return parsed value, assuming at least one successful parse
parse :: Parser a -> String -> a
parse m s = head [x | (x,t) <- apply m s, t == ""]

The Monad type class

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

Parser is a Monad

-- Parsers form a monad

-- class Monad m where
-- return :: a -> m a
-- (>>=) :: m a -> (a -> m b) -> m b

instance Monad Parser where
return x = Parser (\s -> [(x,s)])
m >>= k = Parser (\s ->

[(y, u) |
(x, t) <- apply m s,
(y, u) <- apply (k x) t])

Parser is a Monad with Plus

-- Some monads have additional structure

-- class MonadPlus m where
-- mzero :: m a
-- mplus :: m a -> m a -> m a

instance MonadPlus Parser where
mzero = Parser (\s -> [])
mplus m n = Parser (\s -> apply m s ++ apply n s)

Parsing characters

-- Parse a single character
char :: Parser Char
char = Parser f

where
f [] = []
f (c:s) = [(c,s)]

-- Parse a character satisfying a predicate (e.g., isDigit)
spot :: (Char -> Bool) -> Parser Char
spot p = Parser f

where
f [] = []
f (c:s) | p c = [(c, s)]

| otherwise = []

-- Parse a given character
token :: Char -> Parser Char
token c = spot (== c)

Parsing characters

-- Parse a single character
char :: Parser Char
char = Parser f

where
f [] = []
f (c:s) = [(c,s)]

-- Parse a character satisfying a predicate (e.g., isDigit)
spot :: (Char -> Bool) -> Parser Char
spot p = do { c <- char; guard (p c); return c }

-- Parse a given character
token :: Char -> Parser Char
token c = spot (== c)

Parsing a given string

match :: String -> Parser String
match [] = return []
match (x:xs) = do

y <- token x;
ys <- match xs;
return (y:ys)

Parsing a sequence

-- match zero or more occurrences
star :: Parser a -> Parser [a]
star p = plus p `mplus` return []

-- match one or more occurrences
plus :: Parser a -> Parser [a]
plus p = do { x <- p;

xs <- star p;
return (x:xs) }

Parsing an integer

-- match a natural number
parseNat :: Parser Int
parseNat = do { s <- plus (spot isDigit);

return (read s) }

-- match a negative number
parseNeg :: Parser Int
parseNeg = do { token '-';

n <- parseNat
return (-n) }

-- match an integer
parseInt :: Parser Int
parseInt = parseNat `mplus` parseNeg

Module Exp

module Exp where

import Monad
import Parser

data Exp = Lit Int
| Exp :+: Exp
| Exp :*: Exp
deriving (Eq,Show)

evalExp :: Exp -> Int
evalExp (Lit n) = n
evalExp (e :+: f) = evalExp e + evalExp f
evalExp (e :*: f) = evalExp e * evalExp f

Parsing an expression

parseExp :: Parser Exp
parseExp = parseLit `mplus` parseAdd `mplus` parseMul

where
parseLit = do { n <- parseInt;

return (Lit n) }
parseAdd = do { token '(';

d <- parseExp;
token '+';
e <- parseExp;
token ')';
return (d :+: e) }

parseMul = do { token '(';
d <- parseExp;
token '*';
e <- parseExp;
token ')';
return (d :*: e) }

Testing the parser

$ ghci Exp.hs
GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
[1 of 2] Compiling Parser (Parser.hs, interpreted)
[2 of 2] Compiling Exp (Exp.hs, interpreted)
Ok, modules loaded: Parser, Exp.
> parse parseExp "(1+(2*3))"
Lit 1 :+: (Lit 2 :*: Lit 3)
> evalExp (parse parseExp "(1+(2*3))")
7
> parse parseExp "((1+2)*3)"
(Lit 1 :+: Lit 2) :*: Lit 3
> evalExp (parse parseExp "((1+2)*3)")
9
>

