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Where have you left off last semester?

Haskell
functional imperative

object oriented



Imperative Programming

Pancake Recipe

● Take a bowl
● Add flour
● Add eggs
● Add milk
● While not yet smooth
○ Whisk the batter

● Fry in a pan

I statements are used which are processed step by step

I programs carry state which in OO is expressed in objects



What is object orientation?

It means: your program is structured like the domain (real world).
Objects (organised into classes of similar objects) typically
represent things (organised into types of similar things).
Objects have

I state: they can store data

I behaviour: they can do things, in response to messages

I identity: two objects with the same state can still be different
objects.

Any of state, behaviour, identity can be trivial for a particular
object, though.
In Java, all behaviour is associated with a class. However, it can
be static – that is, not associated with any particular object of the
class.



A First Example

HelloWorld.java

/*************************

* Prints "Hello, World!"

*************************/

public class HelloWorld {

public static void main (String[] args) {

System.out.println("Hello, World!");

}

}



Creating a New Class

1. All Java code sits inside a class.

2. By important convention, class names are capitalised and in
‘CamelCase’.

3. Each class goes into a file of its own (usually; and always in
this course).

4. So, use a text editor (e.g., gedit) to create a file called
HelloWorld.java.

5. The name of the file has to be the same as the name of the
class, and suffixed with .java.

At the terminal

gedit HelloWorld.java



A First Example

Declare a class

public class HelloWorld {

public static void main (String[] args){

System.out.println("Hello World!");

}

}

I Basic form of a class definition.

I Class definition enclosed by curly braces.



A First Example

Declare the main() method

public class HelloWorld {

public static void main (String[] args) {

System.out.println("Hello World!");

}

}

I We need a main() method to actually get our program
started.

I All our other code is invoked from inside main().

I void means the method doesn’t return a value.

I The argument of the method is an array of Strings; this
array is called args.

I Definition of a method enclosed by curly braces.



A First Example

Print a string to standard output

public class HelloWorld {

public static void main (String[] args) {

System.out.println("Hello World!");

}

}

I System.out is an object (a rather special one).

I println("Hello World!") is a message being sent to that
object: println is the method name, "Hello World!" is the
argument.

I The whole line is a statement: must be terminated with a
semi-colon (;).

I Strings must be demarcated by double quotes.

I Strings cannot be broken across a line in the file.



Compiling

I The program needs to be compiled before it can be executed.

I Use the javac command in a terminal.

At the terminal

javac HelloWorld.java

I If there’s a problem, the compiler will complain.

I If not, compiler creates a Java bytecode file called
HelloWorld.class.



Running the Program

I Now that we have compiled code, we can run it.

I Use the java command in a terminal.

At the terminal

java HelloWorld

Hello World!

I Note that we omit the .class suffix in the run command.
The java command wants a classname as argument, not a
filename.
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Edit-Compile-Run Cycle

CompileRun

Edit

Type in the program using 
an editor and save the 
program to a file.
Use the name of the main 
class and the suffix .java for 
the file.
This is called a source file.

The process of compiling a 
source file generates the 
bytecode file.
The byte code will have 
a .class suffix; the prefix will 
be the same.

A java interpreter will read 
the bytecode file and execute 
the instructions in it.
If an error occurs while 
running, the interpreter will 
stop its execution.
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Edit-Compile-Run Cycle

I The program needs to be compiled before it can be executed.

I If you edit a program, you need to compile it again before
running the new version.

I However, if you use an integrated development environment,
this may compile your code automatically.



Development Best Practices

Golden Rules of Programming

1. Compile often

2. Save regularly

Why? Detect errors early!
I Compiler checks syntactical correctness

I Running checks (some) semantic correctness

I Unit tests check (more) semantic correctness
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Basic Functionality



Arithmetic

Addition and Division

public class Calc {

public static void main(String[] args) {

System.out.print("The sum of 6 and 2 is ");

System.out.println(6 + 2);

System.out.print("The quotient of 6 and 2 is ");

System.out.println(6 / 2);

}

}

Output

The sum of 6 and 2 is 8

The quotient of 6 and 2 is 3
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String Concatenation, 1

String Concatenation

public class Concat {

public static void main(String[] args) {

System.out.println("The name is " + "Bond, "

+ "James Bond");

}

}

Output

The name is Bond, James Bond



String Concatenation, 2

String Concatenation

public class Concat {

public static void main(String[] args) {

System.out.println("Is that you, 00" + 7 + "?");

}

}

Output

Is that you, 007?



Assignment: Basic Definitions

Variable: A name that refers to a value

Assignment Statement: Associates a value with a variable

int a, b;
a = 1234 ;
b = 99;

declaration statement

variable name

assignment 
statement

 literal

Important: = is the operator in an imperative statement, not a
logical assertion.



Assignment: Combining Declaration and Initialisation

Variables that have been declared, but not assigned to, are a
potential source of error. (Exercise for the keen: understand what
happens to them in Java.)
It’s often best to declare a variable and initialise it at the same
time.

int a, b;
a = 1234;
b = 99;
int c = a + b;

combined declaration 
and assignment statement



Hello World with Added Variables

Storing a String in a variable

public class HelloWorld {

public static void main ( String [] args ) {

String msg = "Hello World!";

System.out.println( msg );

}

}



Built-in Data Types

type value set literal values operations

char characters ’A’, ’$’ compare

String sequences of
characters

"Hello World!",
"Java is fun"

concatenate

int integers 17, 1234 add, subtract,
multiply, divide

double floating-point
numbers

3.1415, 6.022e23 add, subtract,
multiply, divide

boolean truth values true, false and, or, not



Integer operations

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 2 2 no fractional part
5 % 2 1 remainder
1 / 0 run-time error

3 * 5 - 2 13 * has precedence
3 + 5 / 2 5 / has precedence
3 - 5 - 2 -4 left associative

( 3 - 5 ) - 2 -4 better style
3 - ( 5 - 2 ) 0 unambiguous
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Floating-Point Numbers

The default floating-point type in Java is double.



Floating-Point Operations

expression value

3.141 + .03 3.171

3.141 - .03 3.111

6.02e23 / 2.0 3.01e23

5.0 / 3.0 1.6666666666666667

10.0 % 3.141 0.577

1.0 / 0.0 Infinity

Math.sqrt(2.0) 1.4142135623730951

Math.sqrt(-1.0) NaN



Type Conversion

Sometimes we can convert one type to another.

I Automatic: OK if no loss of precision, or converts to string

I Explicit: use a cast or method like parseInt()

expression result type value

"1234" + 99 String ”123499”
Integer.parseInt("123") int 123

(int) 2.71828 int 2
Math.round(2.71828) long 3
(int) Math.round(2.71828) int 3
(int) Math.round(3.14159) int 3
11 * 0.3 double 3.3
(int) 11 * 0.3 double 3.3
11 * (int) 0.3 int 0
(int) (11 * 0.3) int 3



Let’s practise that



Type Conversion

Moral:
If you want a floating-point result from division,
make at least one of the operands a double



Command-line Arguments

Unix commands

mkdir MyJavaCode

mkdir is a command and MyJavaCode is an argument

Using Java to carry out commands

% java Add 3 6

9

3 and 6 are command-line arguments for the program Add
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Command-line Arguments

public class Add {

public static void main(String[] args) {

int a = Integer.parseInt(args[0]);

int b = Integer.parseInt(args[1]);

System.out.println(a + b);

}

}

int a = Integer.parseInt(args[0]);

I This reads in a string (e.g., "3") from the command line,

I parses it as an int, and

I assigns this as the value of variable a.
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Command-line Arguments

Missing an argument

% java Add 3

java.lang.ArrayIndexOutOfBoundsException: 1

This a run-time error — we didn’t provide anything as a value for
args[1]:

int b = Integer.parseInt(args[1]);



Summary

I Java is an object oriented, imperative programming language
I statements are executed step by step
I objects carry state and have behaviour

I Java is a compiled language (Edit-Compile-Run)

I The entry point into every Java program is the main function

I Variables carry values of different types (int, char, float,
boolean, String, ...)

I A range of arithmetic operations can be used

I casting is one way to convert between types

I Programs can receive user input at start time using
command line arguments



Reading

Java Tutorial
pp1-68, i.e. Chapters 1 Getting Started, 2 Object-Oriented
Programming Concepts, and Chapter 3 Language Basics, up to
Expressions, Statements and Blocks

– except note:

I We use IntelliJ, not NetBeans as our IDE.

I We’ll come to the Chapter 2 material later.

I We’ll talk about Arrays later.

I suggest skimming Ch 2 and the Arrays section, and rereading
them later.

Objects First

Appendix B.1 - B.2, Appendix C.1, Appendix E.1 and E.3

This book has a different order of topics but is generally great for
beginners and has some excellent summaries of basics.


