
Inf1B
Getting Started

Perdita Stevens
adapting earlier versions by Ewan Klein, Volker Seeker, et al.

School of Informatics

Where have you left off last semester?

Haskell
functional imperative

object oriented

Imperative Programming

Pancake Recipe

● Take a bowl
● Add flour
● Add eggs
● Add milk
● While not yet smooth
○ Whisk the batter

● Fry in a pan

I statements are used which are processed step by step

I programs carry state which in OO is expressed in objects

What is object orientation?

It means: your program is structured like the domain (real world).
Objects (organised into classes of similar objects) typically
represent things (organised into types of similar things).
Objects have

I state: they can store data

I behaviour: they can do things, in response to messages

I identity: two objects with the same state can still be different
objects.

Any of state, behaviour, identity can be trivial for a particular
object, though.
In Java, all behaviour is associated with a class. However, it can
be static – that is, not associated with any particular object of the
class.

A First Example

HelloWorld.java

/*************************

* Prints "Hello, World!"

*************************/

public class HelloWorld {

public static void main (String[] args) {

System.out.println("Hello, World!");

}

}

Creating a New Class

1. All Java code sits inside a class.

2. By important convention, class names are capitalised and in
‘CamelCase’.

3. Each class goes into a file of its own (usually; and always in
this course).

4. So, use a text editor (e.g., gedit) to create a file called
HelloWorld.java.

5. The name of the file has to be the same as the name of the
class, and suffixed with .java.

At the terminal

gedit HelloWorld.java

A First Example

Declare a class

public class HelloWorld {

public static void main (String[] args){

System.out.println("Hello World!");

}

}

I Basic form of a class definition.

I Class definition enclosed by curly braces.

A First Example

Declare the main() method

public class HelloWorld {

public static void main (String[] args) {

System.out.println("Hello World!");

}

}

I We need a main() method to actually get our program
started.

I All our other code is invoked from inside main().

I void means the method doesn’t return a value.

I The argument of the method is an array of Strings; this
array is called args.

I Definition of a method enclosed by curly braces.

A First Example

Print a string to standard output

public class HelloWorld {

public static void main (String[] args) {

System.out.println("Hello World!");

}

}

I System.out is an object (a rather special one).

I println("Hello World!") is a message being sent to that
object: println is the method name, "Hello World!" is the
argument.

I The whole line is a statement: must be terminated with a
semi-colon (;).

I Strings must be demarcated by double quotes.

I Strings cannot be broken across a line in the file.

Compiling

I The program needs to be compiled before it can be executed.

I Use the javac command in a terminal.

At the terminal

javac HelloWorld.java

I If there’s a problem, the compiler will complain.

I If not, compiler creates a Java bytecode file called
HelloWorld.class.

Running the Program

I Now that we have compiled code, we can run it.

I Use the java command in a terminal.

At the terminal

java HelloWorld

Hello World!

I Note that we omit the .class suffix in the run command.
The java command wants a classname as argument, not a
filename.

Running the Program

I Now that we have compiled code, we can run it.

I Use the java command in a terminal.

At the terminal

java HelloWorld

Hello World!

I Note that we omit the .class suffix in the run command.
The java command wants a classname as argument, not a
filename.

Edit-Compile-Run Cycle

CompileRun

Edit

Type in the program using
an editor and save the
program to a file.
Use the name of the main
class and the suffix .java for
the file.
This is called a source file.

The process of compiling a
source file generates the
bytecode file.
The byte code will have
a .class suffix; the prefix will
be the same.

A java interpreter will read
the bytecode file and execute
the instructions in it.
If an error occurs while
running, the interpreter will
stop its execution.

Edit-Compile-Run Cycle

CompileRun

Edit

Type in the program using
an editor and save the
program to a file.
Use the name of the main
class and the suffix .java for
the file.
This is called a source file.

The process of compiling a
source file generates the
bytecode file.
The byte code will have
a .class suffix; the prefix will
be the same.

A java interpreter will read
the bytecode file and execute
the instructions in it.
If an error occurs while
running, the interpreter will
stop its execution.

Edit-Compile-Run Cycle

CompileRun

Edit

Type in the program using
an editor and save the
program to a file.
Use the name of the main
class and the suffix .java for
the file.
This is called a source file.

The process of compiling a
source file generates the
bytecode file.
The byte code will have
a .class suffix; the prefix will
be the same.

A java interpreter will read
the bytecode file and execute
the instructions in it.
If an error occurs while
running, the interpreter will
stop its execution.

Edit-Compile-Run Cycle

CompileRun

Edit

Type in the program using
an editor and save the
program to a file.
Use the name of the main
class and the suffix .java for
the file.
This is called a source file.

The process of compiling a
source file generates the
bytecode file.
The byte code will have
a .class suffix; the prefix will
be the same.

A java interpreter will read
the bytecode file and execute
the instructions in it.
If an error occurs while
running, the interpreter will
stop its execution.

Edit-Compile-Run Cycle

I The program needs to be compiled before it can be executed.

I If you edit a program, you need to compile it again before
running the new version.

I However, if you use an integrated development environment,
this may compile your code automatically.

Development Best Practices

Golden Rules of Programming

1. Compile often

2. Save regularly

Why? Detect errors early!
I Compiler checks syntactical correctness

I Running checks (some) semantic correctness

I Unit tests check (more) semantic correctness

Development Best Practices

Golden Rules of Programming

1. Compile often

2. Save regularly

Why? Detect errors early!
I Compiler checks syntactical correctness

I Running checks (some) semantic correctness

I Unit tests check (more) semantic correctness

Basic Functionality

Arithmetic

Addition and Division

public class Calc {

public static void main(String[] args) {

System.out.print("The sum of 6 and 2 is ");

System.out.println(6 + 2);

System.out.print("The quotient of 6 and 2 is ");

System.out.println(6 / 2);

}

}

Output

The sum of 6 and 2 is 8

The quotient of 6 and 2 is 3

Arithmetic

Addition and Division

public class Calc {

public static void main(String[] args) {

System.out.print("The sum of 6 and 2 is ");

System.out.println(6 + 2);

System.out.print("The quotient of 6 and 2 is ");

System.out.println(6 / 2);

}

}

Output

The sum of 6 and 2 is 8

The quotient of 6 and 2 is 3

String Concatenation, 1

String Concatenation

public class Concat {

public static void main(String[] args) {

System.out.println("The name is " + "Bond, "

+ "James Bond");

}

}

Output

The name is Bond, James Bond

String Concatenation, 2

String Concatenation

public class Concat {

public static void main(String[] args) {

System.out.println("Is that you, 00" + 7 + "?");

}

}

Output

Is that you, 007?

Assignment: Basic Definitions

Variable: A name that refers to a value

Assignment Statement: Associates a value with a variable

int a, b;
a = 1234 ;
b = 99;

declaration statement

variable name

assignment
statement

 literal

Important: = is the operator in an imperative statement, not a
logical assertion.

Assignment: Combining Declaration and Initialisation

Variables that have been declared, but not assigned to, are a
potential source of error. (Exercise for the keen: understand what
happens to them in Java.)
It’s often best to declare a variable and initialise it at the same
time.

int a, b;
a = 1234;
b = 99;
int c = a + b;

combined declaration
and assignment statement

Hello World with Added Variables

Storing a String in a variable

public class HelloWorld {

public static void main (String [] args) {

String msg = "Hello World!";

System.out.println(msg);

}

}

Built-in Data Types

type value set literal values operations

char characters ’A’, ’$’ compare

String sequences of
characters

"Hello World!",
"Java is fun"

concatenate

int integers 17, 1234 add, subtract,
multiply, divide

double floating-point
numbers

3.1415, 6.022e23 add, subtract,
multiply, divide

boolean truth values true, false and, or, not

Integer operations

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 2 2 no fractional part
5 % 2 1 remainder
1 / 0 run-time error

3 * 5 - 2 13 * has precedence
3 + 5 / 2 5 / has precedence
3 - 5 - 2 -4 left associative

(3 - 5) - 2 -4 better style
3 - (5 - 2) 0 unambiguous

Integer operations

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 2 2 no fractional part

5 % 2 1 remainder
1 / 0 run-time error

3 * 5 - 2 13 * has precedence
3 + 5 / 2 5 / has precedence
3 - 5 - 2 -4 left associative

(3 - 5) - 2 -4 better style
3 - (5 - 2) 0 unambiguous

Integer operations

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 2 2 no fractional part
5 % 2 1 remainder

1 / 0 run-time error
3 * 5 - 2 13 * has precedence
3 + 5 / 2 5 / has precedence
3 - 5 - 2 -4 left associative

(3 - 5) - 2 -4 better style
3 - (5 - 2) 0 unambiguous

Integer operations

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 2 2 no fractional part
5 % 2 1 remainder
1 / 0 run-time error

3 * 5 - 2 13 * has precedence
3 + 5 / 2 5 / has precedence
3 - 5 - 2 -4 left associative

(3 - 5) - 2 -4 better style
3 - (5 - 2) 0 unambiguous

Integer operations

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 2 2 no fractional part
5 % 2 1 remainder
1 / 0 run-time error

3 * 5 - 2 13 * has precedence

3 + 5 / 2 5 / has precedence
3 - 5 - 2 -4 left associative

(3 - 5) - 2 -4 better style
3 - (5 - 2) 0 unambiguous

Integer operations

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 2 2 no fractional part
5 % 2 1 remainder
1 / 0 run-time error

3 * 5 - 2 13 * has precedence
3 + 5 / 2 5 / has precedence

3 - 5 - 2 -4 left associative
(3 - 5) - 2 -4 better style
3 - (5 - 2) 0 unambiguous

Integer operations

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 2 2 no fractional part
5 % 2 1 remainder
1 / 0 run-time error

3 * 5 - 2 13 * has precedence
3 + 5 / 2 5 / has precedence
3 - 5 - 2 -4 left associative

(3 - 5) - 2 -4 better style
3 - (5 - 2) 0 unambiguous

Floating-Point Numbers

The default floating-point type in Java is double.

Floating-Point Operations

expression value

3.141 + .03 3.171

3.141 - .03 3.111

6.02e23 / 2.0 3.01e23

5.0 / 3.0 1.6666666666666667

10.0 % 3.141 0.577

1.0 / 0.0 Infinity

Math.sqrt(2.0) 1.4142135623730951

Math.sqrt(-1.0) NaN

Type Conversion

Sometimes we can convert one type to another.

I Automatic: OK if no loss of precision, or converts to string

I Explicit: use a cast or method like parseInt()

expression result type value

"1234" + 99 String ”123499”
Integer.parseInt("123") int 123

(int) 2.71828 int 2
Math.round(2.71828) long 3
(int) Math.round(2.71828) int 3
(int) Math.round(3.14159) int 3
11 * 0.3 double 3.3
(int) 11 * 0.3 double 3.3
11 * (int) 0.3 int 0
(int) (11 * 0.3) int 3

Let’s practise that

Type Conversion

Moral:
If you want a floating-point result from division,
make at least one of the operands a double

Command-line Arguments

Unix commands

mkdir MyJavaCode

mkdir is a command and MyJavaCode is an argument

Using Java to carry out commands

% java Add 3 6

9

3 and 6 are command-line arguments for the program Add

Command-line Arguments

Unix commands

mkdir MyJavaCode

mkdir is a command and MyJavaCode is an argument

Using Java to carry out commands

% java Add 3 6

9

3 and 6 are command-line arguments for the program Add

Command-line Arguments

public class Add {

public static void main(String[] args) {

int a = Integer.parseInt(args[0]);

int b = Integer.parseInt(args[1]);

System.out.println(a + b);

}

}

int a = Integer.parseInt(args[0]);

I This reads in a string (e.g., "3") from the command line,

I parses it as an int, and

I assigns this as the value of variable a.

Command-line Arguments

public class Add {

public static void main(String[] args) {

int a = Integer.parseInt(args[0]);

int b = Integer.parseInt(args[1]);

System.out.println(a + b);

}

}

int a = Integer.parseInt(args[0]);

I This reads in a string (e.g., "3") from the command line,

I parses it as an int, and

I assigns this as the value of variable a.

Command-line Arguments

Missing an argument

% java Add 3

java.lang.ArrayIndexOutOfBoundsException: 1

This a run-time error — we didn’t provide anything as a value for
args[1]:

int b = Integer.parseInt(args[1]);

Summary

I Java is an object oriented, imperative programming language
I statements are executed step by step
I objects carry state and have behaviour

I Java is a compiled language (Edit-Compile-Run)

I The entry point into every Java program is the main function

I Variables carry values of different types (int, char, float,
boolean, String, ...)

I A range of arithmetic operations can be used

I casting is one way to convert between types

I Programs can receive user input at start time using
command line arguments

Reading

Java Tutorial
pp1-68, i.e. Chapters 1 Getting Started, 2 Object-Oriented
Programming Concepts, and Chapter 3 Language Basics, up to
Expressions, Statements and Blocks

– except note:

I We use IntelliJ, not NetBeans as our IDE.

I We’ll come to the Chapter 2 material later.

I We’ll talk about Arrays later.

I suggest skimming Ch 2 and the Arrays section, and rereading
them later.

Objects First

Appendix B.1 - B.2, Appendix C.1, Appendix E.1 and E.3

This book has a different order of topics but is generally great for
beginners and has some excellent summaries of basics.

