
Inf1B
Classes and Objects

Perdita Stevens
adapting earlier versions by Ewan Klein, Volker Seeker, et al.

School of Informatics

Why OO?

Software engineering as managing change

Changing code is hard and expensive
but – because the world changes –

essential.

Software engineering as managing change

How can we make changing code easy and cheap?

I minimise the amount of code that must change

I make it easy to work out which code must change

→ have the code that must change live together

How can we make change easier and cheaper?

Key idea: Information Hiding

Hide certain information inside well-defined pieces of code, so that
users of that piece of code don’t depend on it, and don’t need to
change if it changes.

e.g. Modularity and Abstraction via Functions

Application Programming Interface

The interface between the user of the code and the implementation
itself is called an Application Programming Interface (API).

APIProgrammer Implementation

Intuition

Client API

I adjust volume

I switch channel

I switch to standby

Implementation

I cathode ray tube

I 20” screen, 22 kg

I Sony Trinitron
KV20M10

client needs to know

how to use API

implementation needs

to know what API to

implement

Implementation and client need to agree on API ahead of time.

Intuition

Client API

I adjust volume

I switch channel

I switch to standby

Implementation

I HD LED display

I 37” screen, 10 kg

I Samsung
UE37C5800

client needs to know

how to use API

implementation needs

to know what API to

implement

Can substitute better implementation without changing the client.

Data representation

Recall: a data type is a set of values and operations on those
values. May be

I primitive, built into the language with operations defined in
the compiler/runtime, e.g. int, double, boolean

I user-defined, with operations defined in the programming
language itself, e.g. PrinterQueue, HotelRoom, . . .

I Intermediate case where some really important types are not
primitive, but provided with the standard libraries in Java, e.g.
String.

Data representation

Recall: a data type is a set of values and operations on those
values. May be

I primitive, built into the language with operations defined in
the compiler/runtime, e.g. int, double, boolean

I user-defined, with operations defined in the programming
language itself, e.g. PrinterQueue, HotelRoom, . . .

I Intermediate case where some really important types are not
primitive, but provided with the standard libraries in Java, e.g.
String.

Hiding data representation

You shouldn’t need to know how a data type is implemented in
order to use it.

It should suffice to read the documentation: what operations are
there, what do they do?

Terminology:

I abstraction: you don’t need to know about implementation
details

I encapsulation: you can’t depend on implementation details

Different languages have different mechanisms.

Hiding data representation

You shouldn’t need to know how a data type is implemented in
order to use it.
It should suffice to read the documentation: what operations are
there, what do they do?

Terminology:

I abstraction: you don’t need to know about implementation
details

I encapsulation: you can’t depend on implementation details

Different languages have different mechanisms.

Towards object oriented programming...

So far in this course, we’ve been doing
Procedural programming

I tell the computer to do this, then

I tell the computer to do that.

You know:

I how to program with primitive data types e.g. int, boolean;

I how to control program flow to do things with them, e.g.
using if, for;

I how to group similar data into arrays.

Philosophy of object orientation

Problem: what your software must do changes a lot. Structuring
it based on that is therefore expensive.

The domain in which it works changes much less.

→ structuring your software around the things in the domain
makes it easier to understand and maintain.

Philosophy of object orientation

I Things in the world know things: instance variables.

I Things in the world do things: methods.

In other words, objects have state and behaviour.

State and Behaviour

State

I running (yes/no)

I speed (10mph)

I petrol (87%)

Behaviour

I start Engine

I stop Engine

I accelerate

I break

I refill petrol

A program runs by objects sending messages (initiating behaviour)
to one another, and reacting to receiving messages (e.g. changing
state, sending more messages).

State and Behaviour

State

I running (yes/no)

I speed (10mph)

I petrol (87%)

Behaviour

I start Engine

I stop Engine

I accelerate

I break

I refill petrol
A program runs by objects sending messages (initiating behaviour)
to one another, and reacting to receiving messages (e.g. changing
state, sending more messages).

Classes and Objects
How does this work in Java?

Classes to organise code
Java is a class-based object-oriented language.

All code is organised in classes which serve as user defined data
types.

Car
boolean running

int speed

double petrol

startEngine()

stopEngine()

accelerate(int amount)

break(int amount)

refillPetrol(double amount)

State

Behaviour

All the classes you wrote so far only defined behaviour.

Classes to organise code
Java is a class-based object-oriented language.

All code is organised in classes which serve as user defined data
types.

Car
boolean running

int speed

double petrol

startEngine()

stopEngine()

accelerate(int amount)

break(int amount)

refillPetrol(double amount)

State

Behaviour

All the classes you wrote so far only defined behaviour.

Creating a class instance

Now only one important thing is missing.

A Constructor.

Car
boolean running

int speed

double petrol

startEngine()

stopEngine()

accelerate(int amount)

break(int amount)

refillPetrol(double amount)

State

Behaviour

Creating a class instance
Now only one important thing is missing.

A Constructor.

Car
boolean running

int speed

double petrol

startEngine()

stopEngine()

accelerate(int amount)

break(int amount)

refillPetrol(double amount)

Car() Constructor

State

Behaviour

A constructor is used to create an instance of a class which can
then be used in your program.

Classes as blueprints

Car Class

new Car()

Car Instances

I Constructor is a special method with the same name as the
class

I Allocates memory for the class instance and initialises its state

Instances are Objects

In Java, instances of classes are
objects.

Car Example

Using a Car class and its API

Car myCar = new Car();

myCar.startEngine();

myCar.accelerate(30);

myCar.break(30);

myCar.stopEngine();

myCar.refillPetrol(0.5);

Note that we have two independent ideas here:

I Conceptual objects (class instances) such as myCar are
directly present in the program;

I They have static (compile-time) types (Car class) that define
their behaviour.

Car Example

Using a Car class and its API

Car myCar = new Car();

myCar.startEngine();

myCar.accelerate(30);

myCar.break(30);

myCar.stopEngine();

myCar.refillPetrol(0.5);

Note that we have two independent ideas here:

I Conceptual objects (class instances) such as myCar are
directly present in the program;

I They have static (compile-time) types (Car class) that define
their behaviour.

Objects ...

I have a static (compile-time) type defined inside a class

I are instances of classes created at runtime

I are created using a constructor and the new keyword

I are reference types

Objects ...

I have a static (compile-time) type defined inside a class

I are instances of classes created at runtime

I are created using a constructor and the new keyword

I are reference types

Objects are Reference Types
What happens in memory?

Arrays in Memory

Recall what happens with arrays:

0

0
14
4
0

myarr

memory

int[] myarr = new int[5];
myarr[3] = 4;
myarr[2] = myarr[3] + 10;

reference

Class instances in memory

What happens to our Car?

true

30

0.8

mycar

memory

Car myCar = new Car();
myCar.startEngine();
myCar.accelerate(30);
myCar.break(30);
myCar.stopEngine();
myCar.refillPetrol(0.5);

reference
boolean running
int speed
double petrol

Class instances in memory

What happens to our Car?

true

30

0.8

mycar

memory

Car myCar = new Car();
myCar.startEngine();
myCar.accelerate(30);
myCar.break(30);
myCar.stopEngine();
myCar.refillPetrol(0.5);

reference
boolean running
int speed
double petrol

I creating a class instance reserves memory for its state (plus
some internal extras)

I the constructor is executed to initialise this memory (hence
new and constructor in combination)

I the local variable myCar holds a reference to the actual object
representation in memory (same as for arrays)

Closing the Loop on Arrays

The Java language specification states:

An object is a class instance or an array.

In Java, arrays are treated like class instances, e.g.

I created using new

I referenced in memory

I underlying class definition (hidden in the language
implementation).

However, they differ a lot, e.g.

I special way to access state: myarr[3] = 5;

I special way to get length:
for (int i =0; i < myarr.length; i++)

I no methods.

What happens for uninitialised objects?
Car myCar;

myCar.startEngine();

This will not compile: you’ll get an error
error: variable myCar might not have been

initialized

No memory has been allocated for it (using new); no object has
been created.
If you do manage to fool the compiler into failing to notice that
you’re sending a message to an object that hasn’t been initialised,
then you’ll get a runtime error: java.lang.NullPointerException

No reference, no memory allocated:

memory

Car myCar;
myCar.startEngine();

What happens for uninitialised objects?
Car myCar;

myCar.startEngine();

This will not compile: you’ll get an error
error: variable myCar might not have been

initialized

No memory has been allocated for it (using new); no object has
been created.

If you do manage to fool the compiler into failing to notice that
you’re sending a message to an object that hasn’t been initialised,
then you’ll get a runtime error: java.lang.NullPointerException

No reference, no memory allocated:

memory

Car myCar;
myCar.startEngine();

What happens for uninitialised objects?
Car myCar;

myCar.startEngine();

This will not compile: you’ll get an error
error: variable myCar might not have been

initialized

No memory has been allocated for it (using new); no object has
been created.
If you do manage to fool the compiler into failing to notice that
you’re sending a message to an object that hasn’t been initialised,
then you’ll get a runtime error: java.lang.NullPointerException

No reference, no memory allocated:

memory

Car myCar;
myCar.startEngine();

Referencing nothing

Where do references point when there is no
corresponding object allocated for them?

Car myCar = null;
The null literal indicates an object reference pointing at nothing.

Using the myCar variable to call a method on it or change its state
will now result in a java.lang.NullPointerException.

Referencing nothing

Where do references point when there is no
corresponding object allocated for them?

Car myCar = null;
The null literal indicates an object reference pointing at nothing.

Using the myCar variable to call a method on it or change its state
will now result in a java.lang.NullPointerException.

Null - Know the difference!

Class instances in memory

Copying an object instance:

true

30

0.8

myCar

memory

Car myCar = new Car();
Car yourCar = myCar;

reference yourCar

reference

Class instances in memory

Copying an object instance:

true

30

0.8

myCar

memory

Car myCar = new Car();
Car yourCar = myCar;

reference yourCar

reference

Assigning the reference of an object instance to a
local variable of the same type does not copy the
object’s memory, only its reference!

Class instances in memory

Copying an object instance:

true

30

0.8

myCar

memory

Car myCar = new Car();
Car yourCar = new Car();
yourCar.running = myCar.running;
yourCar.speed = myCar.speed;
yourCar.petrol = myCar.petrol;

reference

yourCar

reference

true

30

0.8

To copy an instance, a new one of the same type needs to be
created and its entire state copied over.

Class instances in memory

Comparing class instances:

true

30

0.8

myCar

memory

Car myCar = new Car();
Car yourCar = new Car();
System.out
.println(myCar == yourCar);

yourCar true

30

0.8

What does this print?

false
== compares object references not object states

Class instances in memory

Comparing class instances:

true

30

0.8

myCar

memory

Car myCar = new Car();
Car yourCar = new Car();
System.out
.println(myCar == yourCar);

yourCar true

30

0.8

What does this print?

false

== compares object references not object states

Class instances in memory

Comparing class instances:

true

30

0.8

myCar

memory

Car myCar = new Car();
Car yourCar = new Car();
System.out
.println(myCar == yourCar);

yourCar true

30

0.8

What does this print?

false
== compares object references not object states

Class instances in memory

Comparing class instances:

true

30

0.8

myCar

memory

Car myCar = new Car();
Car yourCar = myCar;
System.out
.println(myCar == yourCar);

yourCar

What does this print?

true
== compares object references not object states

Class instances in memory

Comparing class instances:

true

30

0.8

myCar

memory

Car myCar = new Car();
Car yourCar = new Car();
System.out
.println(myCar.speed ==
 yourCar.speed);

yourCar true

30

0.8

What does this print?

true
== compares object references not object states

in contrast to primitive types

Class instances in memory

Comparing class instances:

Conveniently, most Java library classes have sensible
implementations of the comparison method equals.

String a = new String("hello ");

String b = new String("world");

String c = new String("hello world");

// prints true

System.out.println(c.equals(a+b));

By convention, the equals method is implemented in a way that
compares the states of two objects. (Later I will show you how you
can do that for your own types.)

Let’s practise that

https://www.theodysseyonline.com/your-brain-is-muscle-exercise-it

What does it print?

public class ComparisonA {

public static void main(String [] args) {

int a = 5;

int b = 5;

System.out.println(a == b);

}

}

Prints true. Values of primitive types are compared with ==.

What does it print?

public class ComparisonA {

public static void main(String [] args) {

int a = 5;

int b = 5;

System.out.println(a == b);

}

}

Prints true. Values of primitive types are compared with ==.

What does it print?

public class ComparisonB {

public static void main(String [] args) {

String a = new String("hello ");

String b = new String("world");

String c = new String("hello world");

System.out.println(c == a+b);

}

}

Prints false. References of object instances are compared with ==.

What does it print?

public class ComparisonB {

public static void main(String [] args) {

String a = new String("hello ");

String b = new String("world");

String c = new String("hello world");

System.out.println(c == a+b);

}

}

Prints false. References of object instances are compared with ==.

What does it print?

public class ComparisonC {

public static void main(String [] args) {

String a = new String("hello ");

String b = new String("world");

String c = new String("hello world");

System.out.println(c.equals(a+b));

}

}

Prints true. States of object instances are compared with equals.

What does it print?

public class ComparisonC {

public static void main(String [] args) {

String a = new String("hello ");

String b = new String("world");

String c = new String("hello world");

System.out.println(c.equals(a+b));

}

}

Prints true. States of object instances are compared with equals.

Wrapper classes for primitive types

Primitive types were originally included in Java essentially for
efficiency. However, some things can only be done with objects,
not with instances of primitive types.
E.g. Java provides many kinds of collections and only objects can
be placed in collections.
Therefore, for each primitive type there is a wrapper class. This
lets you create an object which simply wraps up a primitive type
element.
In early versions of Java we used to write things like

Integer i = new Integer(7); // NOW DEPRECATED!

Autoboxing and Unboxing

Autoboxing is the automatic conversion that the Java compiler
makes between the primitive types and their corresponding object
wrapper classes.

Integer num = 5;

If the conversion goes the other way, this is called unboxing.

Integer num = myObject.methodReturningInteger();

int sum = 10 + num;

These days you will seldom have to think about these conversions
– they will mostly just happen.

What does it print?

public class ComparisonD {

public static void main(String [] args) {

Integer a = 5;

Integer b = 5;

System.out.println(a == b);

}

}

Prints true. Even though object references are compared, true is
printed because the literal 5 is cached by the compiler and the
same object is used under the hood.

This caching process of certain literal values is called Interning.

What does it print?

public class ComparisonD {

public static void main(String [] args) {

Integer a = 5;

Integer b = 5;

System.out.println(a == b);

}

}

Prints true. Even though object references are compared, true is
printed because the literal 5 is cached by the compiler and the
same object is used under the hood.

This caching process of certain literal values is called Interning.

What does it print?

public class ComparisonE {

public static void main(String [] args) {

Integer a = 200;

Integer b = 200;

System.out.println(a == b);

}

}

Prints false. Integer literals are only cached from -128 until 127 (1
byte).

What does it print?

public class ComparisonE {

public static void main(String [] args) {

Integer a = 200;

Integer b = 200;

System.out.println(a == b);

}

}

Prints false. Integer literals are only cached from -128 until 127 (1
byte).

What does it print?

public class ComparisonF {

public static void main(String [] args) {

String a = "this is a test";

String b = "this is a test";

System.out.println(a == b);

}

}

Prints true. String literals are also interned.

What does it print?

public class ComparisonF {

public static void main(String [] args) {

String a = "this is a test";

String b = "this is a test";

System.out.println(a == b);

}

}

Prints true. String literals are also interned.

What does it print?

public class ComparisonG {

public static void main(String [] args) {

String a = new String("this is a test");

String b = new String("this is a test");

System.out.println(a == b);

}

}

Prints false. If you explicitly use a constructor, two different object
instances are created.

What does it print?

public class ComparisonG {

public static void main(String [] args) {

String a = new String("this is a test");

String b = new String("this is a test");

System.out.println(a == b);

}

}

Prints false. If you explicitly use a constructor, two different object
instances are created.

How to compare things in Java

For Primitives use ==

For Objects

I use == if you want to know whether two references refer to
the very same object

I but usually, use equals.

By the magic of inheritance, which we’ll come, to, every object in
Java understands equals.
The writer of the class may have implemented the equals method
so that it compares the states of two objects of that class in a way
that makes sense for that class.
If not, there is a default implementation which is just ==.

== implies equals but not vice versa

Class vs Instance Methods

Using methods

Using a method associated with an instance of a class

Car myCar = new Car();

myCar.startEngine();

myCar.accelerate(20);

The method is called by using the ’.’ operator on the variable that
refers to the class instance.

But what about this?

double rnd = Math.random() * 10;

Here, the method is called by using the ’.’ operator on the class
name itself.

Using methods

Using a method associated with an instance of a class

Car myCar = new Car();

myCar.startEngine();

myCar.accelerate(20);

The method is called by using the ’.’ operator on the variable that
refers to the class instance.

But what about this?

double rnd = Math.random() * 10;

Here, the method is called by using the ’.’ operator on the class
name itself.

Class Methods vs. Instance Methods

Instance Methods:

I Associated with an object.

I Identifying an instance method requires an object name:
myCar.startEngine()

Class Methods:

I Associated with a class.

I Identifying a class method requires the class name:
Math.random().

Class Methods vs. Instance Methods

Consider class methods to be globally available, should you be able
to import the corresponding type.

They are also called static methods indicated by the function
modifier you need to use when implementing them.

There is not just static behaviour, there is also static state –
especially useful for constants.

Global Constants

Similar to globally available class methods, global constants can be
declared and initialised using the static and final keywords.

public class MathHelper {

public static final double PI = 3.141592653589793;

// ... some helpful math functions

}

public class Main {

public static double circleArea(double radius) {

return MathHelper.PI * radius * radius;

}

}

Summary

Summary: Why use object orientation?

OO has taken over the world. Why?

It is well suited to support good software engineering practices.

I use objects to model real-world entities

I use classes to model domain concepts.

I These change more slowly than specific functional
requirements,

I so what OO does is to put things together that change
together as requirements evolve.

Change is the thing that makes software engineering hard and
interesting; OO helps manage it.

Summary: Why use object orientation?

OO has taken over the world. Why?
It is well suited to support good software engineering practices.

I use objects to model real-world entities

I use classes to model domain concepts.

I These change more slowly than specific functional
requirements,

I so what OO does is to put things together that change
together as requirements evolve.

Change is the thing that makes software engineering hard and
interesting; OO helps manage it.

Summary: Why use object orientation?

OO has taken over the world. Why?
It is well suited to support good software engineering practices.

I use objects to model real-world entities

I use classes to model domain concepts.

I These change more slowly than specific functional
requirements,

I so what OO does is to put things together that change
together as requirements evolve.

Change is the thing that makes software engineering hard and
interesting; OO helps manage it.

Summary: in Java

I A variable can have
I a primitive type e.g., boolean, int, double; or
I a reference type: any class, e.g. String, Car, Color and any

array type.

I Instances of reference types are created using new.

I Variables of reference types contain references to their
representation in memory.
I Two references can refer to the same memory location.
I Copying the reference does not copy the state of the object
I == compares references, .equals compares state.

I Lastly, object behaviour can be expressed by using class and
instance methods.

Reading

Java Tutorial

does things in a rather different order from us. You could read to
the end of Chapter 4, but you will meet things we have not
covered yet.

Objects First

Chapter 1
Note that this book uses BlueJ which is a specialised IDE for
teaching Object Oriented programming. Feel free to use it as well
if you want to go over the exercises.

