
Inf1B
Java API

Perdita Stevens
adapting earlier versions by Ewan Klein, Volker Seeker, et al.

School of Informatics



Built-in Classes
The Java API / Class Library



Application Programming Interface

The interface between the user of the code and the implementation
itself is called an Application Programming Interface (API).

APIProgrammer Implementation

Major Benefit: Underlying implementation can be changed
(improved) without affecting the user of the API.



Java API

Some functionality is used often by most programs, e.g.

I Printing to the console: System.out. println (”Hi”)

I Handling sequences of multiple characters:
String msg = ”Error: invalid value!”

I Generating a random number:
Integer num = Integer.parseInt(args [0])

I etc.

To avoid the reinvention of the wheel over and over, a library with
standard functionality and classes is provided for every
programming language

In Java this is called the Java API or Java Documentation
https://docs.oracle.com/en/java/javase/11/docs/api/

index.html

https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html


Packages
Organising Classes



Organising code

Things that need to be changed together

should live together.

But Classes are not enough.



Organising code

Java Version
Number of Classes

in Library
11 4410

10 6002

9 6005

8 4240

7 4024

6 3793

5.0 3279

1.4.2 2723

1.3.1 1840

A way of organising code on a higher level is needed, i.e. of
organising classes.



Organising code

Java Version
Number of Classes

in Library
11 4410

10 6002

9 6005

8 4240

7 4024

6 3793

5.0 3279

1.4.2 2723

1.3.1 1840

A way of organising code on a higher level is needed, i.e. of
organising classes.



Organising classes in packages

In Java, packages are used to organise classes.

Think of them as subfolders (which they usually are anyway).



Organising classes in packages

Consider for example java.lang which contains
fundamental classes for using the language, e.g.
Integer, Maths, String

or

java.util which contains various utility classes,
e.g. Arrays, Date, Scanner

Naming Convention package names start with a
lower case symbol and subpackages separated by ’.’



Using Packages

Using a class from a package in your code, requires you to specify
the entire name including the package prefix:

public class DatePrinter {

public static void main(String [] args) {

java.util.Date today = new java.util.Date();

System.out.println("Today ’s date is: "

+ today.toString ());

}

}

Output

Today’s date is: Mon Nov 02 17:28:20 GMT 2020



Using Packages

To save you some writing work, you can import necessary classes.
This allows you to skip the package prefix.

import java.util.Date;

public class DatePrinter {

public static void main(String [] args) {

Date today = new Date();

System.out.println("Today ’s date is: "

+ today.toString ());

}

}

Import statements need to be outside of the class definition. You
can also import all classes from a package:
import java.util.*

but this is (often considered) bad practice.



Using Packages

Static imports allow you to skip class identifiers for calling class
methods or using static constants.

import java.util.Calendar;

import java.util.GregorianCalendar;

import java.text.SimpleDateFormat;

public class CalendarPrinter {

public static void main(String [] args) {

SimpleDateFormat sdf = new SimpleDateFormat("yyyy MMM dd HH:mm:ss");

Calendar calendar = new GregorianCalendar (2019 ,1 ,15 ,13 ,24 ,56);

int year = calendar.get(Calendar.YEAR);

int month = calendar.get(Calendar.MONTH);

int dayOfMonth = calendar.get(Calendar.DAY_OF_MONTH);

System.out.println(sdf.format(calendar.getTime ()));

System.out.println("year: " + year +

" month: " + month +

" dayOfMonth: " + dayOfMonth);

}

}

Without static import.



Using Packages

Static imports allow you to skip class identifiers for calling class
methods or using static constants.

import static java.util.Calendar .*;

import java.util.Calendar;

import java.util.GregorianCalendar;

import java.text.SimpleDateFormat;

public class CalendarPrinter {

public static void main(String [] args) {

SimpleDateFormat sdf = new SimpleDateFormat("yyyy MMM dd HH:mm:ss");

Calendar calendar = new GregorianCalendar (2019 ,1 ,15 ,13 ,24 ,56);

int year = calendar.get(YEAR);

int month = calendar.get(MONTH);

int dayOfMonth = calendar.get(DAY_OF_MONTH);

System.out.println(sdf.format(calendar.getTime ()));

System.out.println("year: " + year +

" month: " + month +

" dayOfMonth: " + dayOfMonth);

}

}

With static import.



Using Packages

I am using Integer, String and Math all the time but never need
to import anything!

All classes from the java.lang package are included automatically
into every Java program.



Using Packages

I am using Integer, String and Math all the time but never need
to import anything!
All classes from the java.lang package are included automatically
into every Java program.



Creating your own packages

You can create your own packages by using the package keyword.

package com.dateapp.output;

import java.util.Date;

public class DatePrinter {

public static void main(String [] args) {

Date today = new Date();

System.out.println("Today’s date is: "

+ today.toString ());

}

}

The package definition needs to go into the first line of your class
document.
Also, make sure you put the underlying file in the correct subfolder.



Default package

The default package indicates that your source files are in no
particular package.



Namespace management

Packages maintain their own isolated namespaces

com.myapp.graphics.Utils

com.myapp.io.Utils

Classes with the same name can co-exist in the same program if
they are in different packages.



Java API

With this knowledge, let’s take another quick look at the API.
https://docs.oracle.com/en/java/javase/11/docs/api/

index.html

https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html


Strings
An example from the class library



String: basis for text processing

Underlying set of values: sequences of Unicode characters.
In Java Strings are immutable: none of the operations change the value.

public class String

String(String s) create a string with same value as s

char charAt(int i) character at index i

String concat(String t) this string with t appended
int compareTo(String t) compare lexicographically with t

boolean endsWith(String post) does string end with post?
boolean equals(Object t) is t a String equal to this one?

int indexOf(String p) index of first occurrence of p
int indexOf(String p, int i) as indexOf, starting search at index i

int length() return length of string
String replaceAll(String a, String b) result of changing all as to bs

String[] split(String delim) result of splitting string at delim
boolean startsWith(String pre) does string start with pre?
String substring(int i, int j) from index i to index j − 1 inclusive

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


Typical String Processing Code

is the string a palindrome?

public static boolean isPalindrome(String s) {
    int N = s.length();
    for (int i = 0; i < N / 2; i++) {
        if (s.charAt(i) != s.charAt(N - 1 - i))
            return false;
    }
    return true;
}

extract filenames and extensions
from a command-line argument

String s = args[0];
int dot = s.indexOf(".");
String base = s.substring(0, dot);
String extension = s.substring(dot + 1, s.length());

print all lines from standard input
containing the string ”info”

while (!StdIn.isEmpty()) {
    String s = StdIn.readLine();
    if (s.contains("info"))
        System.out.println(s);
}

print all ac.uk URLs in text file
on standard input

while (!StdIn.isEmpty()) {
    String s = StdIn.readString();
    if (s.startsWith("http://") && s.endsWith("ac.uk"))
        System.out.println(s);
}



Format Strings

How to gain more fine-grained control over print
strings.



println can be Clunky

The student named ’Lee’ is aged 18.

Using string concatenation

System.out.println("The student named ’"

+ name

+ "’ is aged "

+ age

+ ".");



String with Format Specifiers, 1

Target String

"The student named ’Lee’ is aged 18."

String with Gaps

"The student named ’_’ is aged _."

String with Format Specifiers

"The student named ’%s’ is aged %s."

I %s is a placeholder for a string.

I Called a format specifier.

I Each format specifier in a string gets replaced by an actual
value.



String with Format Specifiers, 1

Target String

"The student named ’Lee’ is aged 18."

String with Gaps

"The student named ’_’ is aged _."

String with Format Specifiers

"The student named ’%s’ is aged %s."

I %s is a placeholder for a string.

I Called a format specifier.

I Each format specifier in a string gets replaced by an actual
value.



String with Format Specifiers, 1

Target String

"The student named ’Lee’ is aged 18."

String with Gaps

"The student named ’_’ is aged _."

String with Format Specifiers

"The student named ’%s’ is aged %s."

I %s is a placeholder for a string.

I Called a format specifier.

I Each format specifier in a string gets replaced by an actual
value.



String with Format Specifiers, 1

Target String

"The student named ’Lee’ is aged 18."

String with Gaps

"The student named ’_’ is aged _."

String with Format Specifiers

"The student named ’%s’ is aged %s."

I %s is a placeholder for a string.

I Called a format specifier.

I Each format specifier in a string gets replaced by an actual
value.



String with Format Specifiers, 2

String.format("The student named '%s' is aged %s.", name, age);

arg1

arg2



String with Format Specifiers, 3

Define a Format String

String str =

String.format("The student named ’%s’ is aged %s.",

name, age);

System.out.println(str);

Output

The student named ’Lee’ is aged 18.



printf, 1

Shorter version

System.out. printf ("The student named ’%s’ is aged %s.",

name, age);

Output

The student named ’Lee’ is aged 18.



printf, 2

Convert char to String

System.out.printf("’%s’ is for Apple.", ’A’);

Output

’A’ is for Apple.



printf, 2

Round to 2 decimal places

System.out.printf("The value of pi is %f", Math.PI);

System.out.printf("The value of pi is %.2f", Math.PI);

Output

The value of pi is 3.141593

The value of pi is 3.14

Include a newline

System.out.printf("The value of pi is %f\n", Math.PI);



printf, 2

Round to 2 decimal places

System.out.printf("The value of pi is %f", Math.PI);

System.out.printf("The value of pi is %.2f", Math.PI);

Output

The value of pi is 3.141593

The value of pi is 3.14

Include a newline

System.out.printf("The value of pi is %f\n", Math.PI);



Code Documentation



Code Documentation

Providing well documented code is an essential skill of a software
developer.

I Tell other developers how to use your code.

I Understand the workings of a complex algorithm more quickly.

I Find your way around your own code when you come back to
it after some time.

I Supports the development process by helping you think
through a given problem.



Types of Documentation

Comments within the code.

public static int sum(int[] data) {

int sum = 0;

/* This loop

iterates over

each entry in

the data array */

for (int i = 0; i < data.length; i++)

{

// accumulate sum of each data entry

sum += data[i];

}

return sum;

}

Improve clarity of specific parts of an algorithm or “activate” /
“deactivate” specific code sections quickly.



Types of Documentation

Javadoc comments preceding methods and classes.

/**

* First sentence of the comment should be a

* summary sentence.

* Documentation comment is written in HTML , so it can

* contain HTML tags as well.

* For example , below is a paragraph mark to separate

* description text from Javadoc tags.

* <p/>

* @author Krishan Kumar

*/

public class Calculator {

public static int sum(int[] data) {

int sum = 0;

...

Describe the functionality and intended use of specific software
components.



Types of Documentation

Javadoc comments preceding methods and classes.

/**

* Calculates the sum of all entries in a given integer array.

* Empty arrays are considered to have a sum of zero.

*

* @param data input array containing the data

* @return sum of all values in given data

* @throws NullPointerException if the array is null

*/

public static int sum(int[] data) {

if (data == null)

throw new NullPointerException("Data must not be null.");

int sum = 0;

for (int i = 0; i < data.length; i++)

sum += data[i];

return sum;

}

Use a contract-style specification between function author and
function user which defines the delivered output for provided input.



Javadoc

@param Used in method comments. It describes a
method parameter. The name should be the
formal parameter name. The description
should be a brief one line description of the
parameter.

@return Used in method comments. It describe the
return value from a method with the exception
of void methods and constructors.

@throws Used in method comments. It indicates any
exceptions that the method might throw and
possible reasons for the occurrence of this
exception.

source: https://cs-fundamentals.com/java-programming/java-comments-javadoc-single-multi-line.php

https://cs-fundamentals.com/java-programming/java-comments-javadoc-single-multi-line.php


Javadoc

Java provides a generator for API style documentations using
javadoc entries in code.

Demo



How much commenting do I need to do?

javadoc every method, class and field/constant

within code ???



How much commenting do I need to do?

javadoc every method, class and field/constant

within code ???



Good Comments vs. Bad Comments

It is not always easy to decide if comments are useful or if more
comments actually make the code less readable.
Let’s consider some examples ...

// ...



Good Comments vs. Bad Comments

Don’t write comments that are glaringly obvious from simply
looking at the code.

return 1; // returns 1

int[] data = {1, 2, 3, 4};

// print every entry in data

for (int i = 0; i < data.length; i++) {

System.out.println(data[i]);

}

Assume that the person reading your code understands Java.



Good Comments vs. Bad Comments

Don’t write comments that are glaringly obvious from simply
looking at the code.

return 1; // returns 1

int[] data = {1, 2, 3, 4};

// print every entry in data

for (int i = 0; i < data.length; i++) {

System.out.println(data[i]);

}

Assume that the person reading your code understands Java.



Good Comments vs. Bad Comments

Don’t write comments that are glaringly obvious from simply
looking at the code.

return 1; // returns 1

int[] data = {1, 2, 3, 4};

// print every entry in data

for (int i = 0; i < data.length; i++) {

System.out.println(data[i]);

}

Assume that the person reading your code understands Java.



Good Comments vs. Bad Comments

Don’t write comments that are simply not true.

// always returns true

public static boolean isActive() {

return false;

}

This can actually become difficult and work intensive as soon as
your code starts changing over time.



Good Comments vs. Bad Comments

Don’t write comments that are simply not true.

// always returns true

public static boolean isActive() {

return false;

}

This can actually become difficult and work intensive as soon as
your code starts changing over time.



Good Comments vs. Bad Comments

Avoid comments where you could make the code more clear by
restructuring it and using helpful variable and method names.

public static String get() {

// Load the participants from the database

Entry[] arr = db.getAll();

// just get the participant’s names

String[] res = new String[arr.length];

for(int i = 0; i < res.length; i++) {

res[i] = arr[i].getName();

}

return res;

}



Good Comments vs. Bad Comments

Avoid comments where you could make the code more clear by
restructuring it and using helpful variable and method names.

public static String[] getParticipants() {

Person[] participants = database.getAllParticipants();

String[] pnames = new String[participants.length];

for(int i = 0; i < participants.length; i++) {

pnames[i] = participants[i].getName();

}

return pnames;

}

You would call this self-documenting code

Source: https://blog.woubuc.be/post/self-documenting-code-is-a-myth/



Good Comments vs. Bad Comments

Avoid comments where you could make the code more clear by
restructuring it and using helpful variable and method names.

public static String[] getParticipants() {

Person[] participants = database.getAllParticipants();

String[] pnames = new String[participants.length];

for(int i = 0; i < participants.length; i++) {

pnames[i] = participants[i].getName();

}

return pnames;

}

You would call this self-documenting code

Source: https://blog.woubuc.be/post/self-documenting-code-is-a-myth/



Good Comments vs. Bad Comments

Don’t do any of this nonsense ...

// This code sucks, you know it and I know it.

// Move on and call me an idiot later

// magic, do not touch!

/* Class used to workaround Richard being

a f***ing idiot */

https://stackoverflow.com/questions/184618/

what-is-the-best-comment-in-source-code-you-have-ever-encountered

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered


Good Comments vs. Bad Comments

Don’t do any of this nonsense ...

// This code sucks, you know it and I know it.

// Move on and call me an idiot later

// magic, do not touch!

/* Class used to workaround Richard being

a f***ing idiot */

https://stackoverflow.com/questions/184618/

what-is-the-best-comment-in-source-code-you-have-ever-encountered

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered


Good Comments vs. Bad Comments

Don’t do any of this nonsense ...

// This code sucks, you know it and I know it.

// Move on and call me an idiot later

// magic, do not touch!

/* Class used to workaround Richard being

a f***ing idiot */

https://stackoverflow.com/questions/184618/

what-is-the-best-comment-in-source-code-you-have-ever-encountered

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered


How much commenting do I need to do?

javadoc every method, class and field/constant

within code to explain why you are doing things a
certain way, if that way is non-obvious



Consistent Coding Style

Not only documentation but also a consistent coding style improve
your code quality.

I class, method and variable naming conventions

I spacing

I placement of brackets

I positioning of class elements

I ...

Consider the Inf1B Coding Conventions Document!



Consistent Coding Style

Not only documentation but also a consistent coding style improve
your code quality.

I class, method and variable naming conventions

I spacing

I placement of brackets

I positioning of class elements

I ...

Consider the Inf1B Coding Conventions Document!



Third Party Libraries

A lot of library code is provided by other developers
for you to use.

They are usually distributed as jar files.



Summary

I The Java language comes with a set of predefined classes
wrapping up most often used functionality.

I Packages are used to organise classes by topic.

I Strings and String formatting are useful

I For high quality code, you should write documentation and
comments (see Inf1B Coding Conventions)

I Third Party Libraries



Reading

Java Tutorial
Chapter 8 Packages

Chapter 9 Numbers and Strings

Inf1B Coding Conventions

Based on Objects First, Appendix J


