Inf1B

Collections

Perdita Stevens
adapting earlier versions by Ewan Klein, Volker Seeker, et al.

School of Informatics

Rigidity of arrays

» Length of array is fixed at creation time.

» Can't be expanded.

» Can't be shrunk.

» Arrays are part of Java language — uses special syntax.
>

E.g., myArray[i] for accessing the ith element.

Rigidity of arrays

» Length of array is fixed at creation time.

» Can't be expanded.

» Can't be shrunk.

» Arrays are part of Java language — uses special syntax.
>

E.g., myArray[i] for accessing the ith element.

Arrays are not always optimal for handling data.

ArrayList

» Can grow and shrink as needed;

» provides methods for inserting and removing elements.

ArrayList

Declaration

ArrayList<String> cheers = new ArrayList<String>Q);

» This is an array list of strings; counterpart to String[].
» Angle brackets indicate that String is a type parameter.

» Can replace String with e.g. HotelRoom to get different
array list type.

» In general: use ArrayList<E> to collect objects of type E;
but E cannot be a primitive type.

ArrayList

Declaration

ArrayList<String> cheers = new ArrayList<String>Q);

» This is an array list of strings; counterpart to String[].
» Angle brackets indicate that String is a type parameter.

» Can replace String with e.g. HotelRoom to get different
array list type.

» In general: use ArrayList<E> to collect objects of type E;
but E cannot be a primitive type.
NB:
ArrayList<String> cheers = new ArrayList<>();

Since Java 8 the compiler can infer the type of the list in the
constructor call.

ArrayList: Methods

> A newly constructed ArrayList has size 0.
» ArrayList has various methods, which allow us to:

» keep on adding new elements;
> remove elements.

» The size changes after each addition / removal.

ArrayList: Adding

Adding Elements

ArrayList<String> cheers = new ArrayList<String>(Q);
cheers.add("hip");

cheers.add("hip");

cheers.add("hooray") ;

int n = cheers.size(); // n gets value 3

» add() appends each element to the end of the list.

ArrayList: Printing

Printing an ArrayList

System.out.println(cheers);

[hip, hip, hooray]

The compiler implicitly calls the toString() method of the
cheers object which in turn calls the toString() method of each

of its list elements.

ArrayList: More methods

Index of first occurrence

int ind = cheers.index0f("hip"); // ind gets value O

Adding element at an index

cheers.add(1, "hop"); // 2nd "hip" gets shunted along

Elements of cheers: ["hip", "hop", "hip", "hooray"]

ArrayList: More methods

contains ()

boolean isHip = cheers.contains("hip"); // isHip is true
remove ()

cheers.remove("hip"); // removes first occurrence of "hip
Elements of cheers: "hop", "hip", "hooray"

get(int index)

cheers.get(0); // get the first element
// returns "hop"

ArrayList and Loops
Looping over ArrayList:

Standard for loop

for (int i = 0; i < cheers.size(); i++) {
System.out.println(cheers.get(i));

ArrayList and Loops
Looping over ArrayList:

Standard for loop

for (int i = 0; i < cheers.size(); i++) {
System.out.println(cheers.get(i));

Enhanced for again

for (String s : cheers) {
System.out.println(s) ;
}

ArrayList and Loops

Enhanced for again

for (String s : cheers) {
System.out.print(s + "\thas index: ");
System.out.println(cheers.index0f (s)) ;

3

Output

hop has index: O
hip has index: 1

hooray has index: 2

Wrapper Classes

Wrapper Classes:

» The type variable E in a generic type like ArrayList<E> must
resolve to a reference type.

» So ArrayList<int> will not compile.

» All the primitive types can be turned into objects by using
wrapper classes:

Primitive Type Wrapper Class

boolean Boolean
char Character

double Double
int Integer
long Long

NB Wrapper class names are always capitalized, always complete
words.

Auto-boxing

» Conversion between primitive types and corresponding
wrapper classes is automatic.

P> Process of conversion is called auto-boxing

Auto-box example

Double batteryCharge = 2.75;
double x = batteryCharge;

Auto-box example

ArrayList<Double> data = new ArrayList<Double>();
data.add(29.95);
double x = data.get(0);

Custom Types in ArrayLists

You can also put your own data types into an ArrayList:

Circle List

ArrayList<Circle> data = new ArrayList<Circle>();
Circle ¢ = new Circle(10);

data.add(c);

data.get(0) .enlarge(2);

Custom Types in ArrayLists

You can also put your own data types into an ArrayList:
Circle List

ArrayList<Circle> data = new ArrayList<Circle>();
Circle ¢ = new Circle(10);

data.add(c);
data.get(0) .enlarge(2);

Some functionality will, however, not work properly unless you
implement the necessary Interfaces (I will tell you more later).

Comparing Elements

Collections.sort(data);
Collections.reverse(data);

Nested ArrayLists

Since | can use any object type as type parameter, | can also
create ArrayLists of ArrayLists.

Daily Temperature Lists

ArrayList<ArrayList<Double>> dailyTemp =
new ArrayList<ArrayList<Double>>();

dailyTemp.add(new ArrayList<Double>());
dailyTemp.get (0).add(1.2);

dailyTemp.get (0).add(1.4);
dailyTemp.add(new ArrayList<Double>());
dailyTemp.get (1) .add(2.0);
dailyTemp.get(1).add(1.9);

[([1.0, 1.4], [2.0, 1.9]]

Lists of Lists

This is where type inference comes in handy.
Nested Lists

ArrayList<ArrayList<Double>> dailyTemp = new ArrayList<>();
dailyTemp.add(new ArrayList<>());
dailyTemp.get(0).add(1.0);

dailyTemp.get (0).add(1.4);

dailyTemp.add(new ArrayList<>());
dailyTemp.get (1) .add(2.0);

dailyTemp.get (1) .add(1.9);

[[1.0, 1.4]1, [2.0, 1.9]]

Import

Importing:
> To get full access to Java API, we need to import classes.
» Not necessary if class is in same folder, or part of java.lang
(e.g., Math library).
» To use ArrayList, add the appropriate import statement at
top of your file:
Import example

import java.util.ArrayList;

Import

Importing:
> To get full access to Java API, we need to import classes.

» Not necessary if class is in same folder, or part of java.lang
(e.g., Math library).

» To use ArrayList, add the appropriate import statement at
top of your file:

Import example

import java.util.ArrayList;

Import example — Wrong!

import java.util.ArrayList<String>; // Don’t use parameter

Java API

Look at sample Javadoc web page.
https://docs.oracle.com/en/java/javase/11/docs/api/
index.html

https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html

Another word about removing elements

Let's assume you want to remove elements from a list of Strings.

ArrayList<String> names = new ArrayList<String>();
names.add("Charles");

names.add ("Marry") ;

names.add("Peter");

Another word about removing elements

Let's assume you want to remove elements from a list of Strings.

ArrayList<String> names = new ArrayList<String>();
names.add("Charles");

names.add ("Marry") ;

names.add("Peter");

names .remove ("Peter") ;

Another word about removing elements

Let's assume you want to remove elements from a list of Strings.

ArrayList<String> names = new ArrayList<String>();
names.add("Charles");

names.add ("Marry") ;

names.add("Peter");

names.remove ("Peter") ; J

This works if | know exactly which object to remove. But what if |
want to remove every String that contains the substring "ar"?

Collection lterators

Demo

Collection lterators

Iterators are objects which allow you to iterate through each

element of a collection.

// Declare by parameterising with the content type:

Iterator<String> namelter;

// Initialise by asking the collection for an instance.

namelter = names.iterator();

// Iterate using a while loop and hasNext():

while (nameIter.hasNext()) {
// Access elements of the collection using getNext():
String element = namelter.getNext();
// Remove elements while iterating using remove():
namelter.remove() ;

}

Maps / Associative Arrays

Associative Arrays

Associative array:
> Associates a collection of unique keys with values.
» Ordinary arrays: keys can only be integers.

» Associative arrays allow keys of many types, most notably
strings.
> Examples:

1. Given a person’s name, look up a telephone number.
2. Given an internet domain, look up its IP address.

3. Given a geo-location, look up its GPS coordinates.
4. Given a word, look up its frequency in a text.

P Relationship between key and value: mapping.

Java: associative arrays are implemented by type HashMap.

Map People to their Matric Nos.

Keys

Peter
Michael
Helen
Mary
John

Values

P 50189034

» 50289125

» 50378435

» 50412375

» s0456782

Map Words to Length

Keys Values
"this" e / 4
ll_i-sll ‘ > 2
llthell ‘
"t_i-me" /

"Clnd"

Map People to their Matric Nos: Wrong!

Keys Values
Peter @ » 50189034
Michael @ p 50289125
Peter e P 50378435
Mary ® p s0412375
John ® » s0456782

NB Keys must be unique.

Map People to their Telephone Nos: Wrong!

Keys Values
Peter » 504455
Michael :>> 502331
Helen @ » 509800
Mary e » 506666
John ° p 501235

> A given key can only be mapped to one value.

» However, type of value can be array, or some other object.

HashMap

Import HashMap

import java.util.HashMap;

HashMap

Import HashMap

import java.util.HashMap;

Declare HashMap

HashMap<String, Integer> map
= new HashMap<String, Integer>();

> HashMap takes two type parameters.
» Here, String is type of key, Integer is type of value.

HashMap

Import HashMap

import java.util.HashMap;

Declare HashMap

HashMap<String, Integer> map
= new HashMap<String, Integer>();

> HashMap takes two type parameters.
» Here, String is type of key, Integer is type of value.

NB: There is a different type called Hashtable which is the same
for our purposes.

Mapping Words to their Lengths

Goal: Given a string of words, derive an associative array that
maps each word to its length.

1. Split the string on whitespace, to yield words.

2. For each word w, add it as a key, and associate it with value
w.length(Q).

3. When we add the same key again, we overwrite the previous
association — wasteful but harmless in this case.

split () method of String

String sent = "this is the time and this is the record of the time";
String[] words = sent.split(" "); // split on whitespace

HashMap: Add and retrieve mappings

» put(Key, Value): put Value as the value of Key in
wordLengths.
HashMap<String, Integer> wordlLengths = new HashMap<String, Integer>(Q);
for (String word : words) {
wordLengths.put(word, word.length());
}
Tadd a key-value pair to the mapping F

> get(Key): get the value of Key in wordLengths.

int wl = wordLengths.get("record"); // value is 6

HashMap: Add and retrieve mappings

wordLengths.keySet (): the set of keys in wordLengths.
|

[of, record, time, is, the, this, and]

HashMap: Add and retrieve mappings
wordLengths.keySet (): the set of keys in wordLengths.
|

[of, record, time, is, the, this, and]

Q How do we list all key-value pairs in a map?
A Loop over the set of keys.

for (String key : wordLengths.keySet()) {
System.out.printf("%s => %s\n", key, wordLengths.get(key));

}

of => 2
record => 6
time => 4
is => 2
the => 3
this => 4
and => 3

HashMap: Printing

Output

System.out.println(wordLengths) ;

{of=2, record=6, time=4, is=2, the=3, this=4, and=3}

Format is { Keyl=Valuel, Key2=Value2, ... }

Custom Types in HashMaps

You can also put your own data types into a HashMap:
Circle Values
HashMap<String, Circle> data = new HashMap<String, Circle>();

data.put("Small", new Circle(2));
data.put("Large", new Circle(200));

Custom Types in HashMaps

You can also put your own data types into a HashMap:

Circle Values

HashMap<String, Circle> data = new HashMap<String, Circle>();
data.put("Small", new Circle(2));
data.put("Large", new Circle(200));

Using custom types as keys, is more tricky: You will have to make
sure they have an equals method and produce the same hash
code.

Nested

HashMaps

Similar to ArrayLists, you can also write nested HashMaps.

Circle Organiser

HashMap<String, ArrayList<Circle>> data = new HashMap<>();

data
data
data
data
data
data

.put ("Large",
.put("Small",
.get("Large").
.get("Large") .
.get("Small").
.get("Small").

new ArrayList<>());
new ArrayList<>());
add(new Circle(200));
add (new Circle(300));
add(new Circle(5));
add(new Circle(6));

System.out.println(data);

Let's assume Circle implements toString.

Small=[5, 6], Large=[200, 300]

Summary ArrayList & HashMap

» Use ArrayList when you want your arrays to be able to
grow, or you want to easily insert and remove items in the
middle of an array.

» Use HashMap when you want to use keys other than a
predetermined list of integers.

» For more on ArrayList and HashMap, look at the Java API:
https://docs.oracle.com/en/java/javase/11/docs/
api/index.html

> [terate collections with ease using an lterator object.

https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html

Reading

Objects First
Chapter 4 Grouping Objects

