
Inf1B
Stack vs. Heap

Perdita Stevens
adapting earlier versions by Ewan Klein, Volker Seeker, et al.

School of Informatics

Objects ...

I have a static (compile-time) type defined inside a class

I are instances of classes created at runtime

I are created using a constructor and the new keyword

I are reference types

A homemade class: Circle

Next time, we’ll see how to define a Circle class (in several
variants). Let’s start by seeing how we might use one.
Suppose its API is:

public class Circle

Circle(double radius) constructor
double getArea()

void enlarge(int scaleFactor)

boolean equals(Object o) true iff o is a Circle of same size

Using Circle

Circle c1 = new Circle(1);

double a1 = c1.getArea(); // pi

Circle c2 = new Circle(2);

double a2 = c2.getArea(); // 4 pi

Circle c3 = c1; // two references to same object

double a3 = c3.getArea(); // pi

System.out.println (c1 == c2); // false

System.out.println (c1.equals(c2)); // also false

System.out.println (c1 == c3); // true

System.out.println (c1.equals(c3)); // also true

Using Circle, continued

c1.enlarge(2);

double a1new = c1.getArea(); // now 4 pi

double a2new = c2.getArea(); // still 4 pi

double a3new = c3.getArea(); // now 4 pi

System.out.println (c1 == c2); // still false

System.out.println (c1.equals(c2)); // now true

System.out.println (c1 == c3); // still true

System.out.println (c1.equals(c3)); // also still true

Stack vs. Heap
Where objects and local variables actually live!

Memory so far...

memory

Actually more like this:

Stack Heap

The Java Virtual Machine (JVM) manages memory in two
different areas:

1. The Stack: for local variables

2. The Heap: for objects

Stack Memory

Let’s look at the Stack first.

public static int calcWeeks(int money, int target) {

double sweets = 0.25;

double redMoney = money * (1 - sweets);

return (int) (target / redMoney);

}

public static void main(String[] args) {

int jackMoney = 2;

int jackTarget = 10;

double weeks = calcWeeks(jackMoney, jackTarget);

}

Stack Memory

Stack

public static String
main(String[] args) {
 int jackMoney = 2;
 int jackTarget = 10;
 double weeks =
 calcWeeks(jackMoney, jackTarget);
}

jackMoney

jackTarget
weeks 6

2

10
Stack frame
for main call

A little area on the stack, called a stack frame, is reserved for each
function call. It holds:

I arguments given to the function

I local variables

I some extra stuff such as a return address to the caller

Let’s ignore args for now.

Stack Memory

Stack

public static int
calcWeeks(int money, int target) {
 double sweets = 0.25;
 double redMoney = money * (1 - sweets);
 return (int) (target / redMoney);
}

money

target

sweets

redMoney
0.25

2

10

1.5

Stack frame
for calcWeeks

call

public static String
main(String[] args) {
 int jackMoney = 2;
 int jackTarget = 10;
 double weeks =
 calcWeeks(jackMoney, jackTarget);
}

jackMoney

jackTarget
weeks 6

2

10
Stack frame
for main call

When a function call returns, its stack frame is removed from the
stack and its return value copied into the caller’s stack frame.

Recursion and Stack space

This knowledge can be important when working with recursive
functions:

public int sumUp(int n) {

if (n==1) return 1;

else return sumUp(n-1) + n;

}

This program calculates the sum of all numbers from 1 until n.

What can happen for very large n?

Recursion and Stack space

This knowledge can be important when working with recursive
functions:

public int sumUp(int n) {

if (n==1) return 1;

else return sumUp(n-1) + n;

}

This program calculates the sum of all numbers from 1 until n.

What can happen for very large n?

Recursion and Stack space

If a recursion is too deep, you can run out of stack memory.

java.lang.StackOverFlowError

Usually, the stack memory is much smaller than the heap memory.
You can configure your JVM at program start time.

Stack and Heap

Stack Heap

The Java Virtual Machine (JVM) manages memory in two
different areas:

1. The Stack: for local variables

2. The Heap: for objects

Heap Memory

Stack
Car myCar = new Car();
myCar.startEngine();
int gas = 20;
myCar.accelerate(gas);

myCar

gas 20

Heap

true

20

0.5

The memory of each object is put on the heap, while a reference to
that object is kept on the stack.

Heap Memory

Stack
Car myCar = new Car();
myCar.startEngine();
int gas = 20;
myCar.accelerate(gas);
Car yourCar = myCar;

myCar

gas 20

Heap

true

20

0.5yourCar

The memory of each object is put on the heap, while a reference to
that object is kept on the stack.

Heap Memory

Stack
Car myCar = new Car();
myCar.startEngine();
int gas = 20;
myCar.accelerate(gas);
Car yourCar = new Car();

myCar

gas 20

Heap

true

20

0.5yourCar

false

0

0.2

The memory of each object is put on the heap, while a reference to
that object is kept on the stack.

Heap Memory

Stack
Car myCar = new Car();
myCar.startEngine();
int gas = 20;
myCar.accelerate(gas);
Car yourCar = new Car();

myCar

gas 20

Heap

true

20

0.5yourCar

false

0

0.2

The memory of each object is put on the heap, while a reference to
that object is kept on the stack.

Hence, passing objects around via function calls can lead to side
effects.

Function call side effects

Stack
public static void
addOne(int[] anArray){
 anArray[0]++;
}
public static void
main(String[] args) {
 int[] a = { 0, 1 };
 addOne(a);
}

a

Heap

0

1anArray

The array content on the heap is changed as a side effect of the
function addOne.

Let’s practise that

https://www.theodysseyonline.com/your-brain-is-muscle-exercise-it

What does it print?

public class AddOne {

public static void addOne(int[] anArray) {

anArray [0]++;

}

public static void main(String [] args) {

int[] a = { 0, 1 };

addOne(a);

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

}

}

}

Prints 1 1, due to call by reference and side effects.

What does it print?

public class AddOne {

public static void addOne(int[] anArray) {

anArray [0]++;

}

public static void main(String [] args) {

int[] a = { 0, 1 };

addOne(a);

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

}

}

}

Prints 1 1, due to call by reference and side effects.

What does it print?

public class AddOne {

public static void addOne(int[] anArray) {

anArray = new int [2];

}

public static void main(String [] args) {

int[] a = { 0, 1 };

addOne(a);

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

}

}

}

Prints 0 1, since new memory is allocated in function.

What does it print?

public class AddOne {

public static void addOne(int[] anArray) {

anArray = new int [2];

}

public static void main(String [] args) {

int[] a = { 0, 1 };

addOne(a);

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

}

}

}

Prints 0 1, since new memory is allocated in function.

What does it print?

public class AddOne {

public static int[] addOne(int[] anArray) {

anArray = new int [2];

return anArray;

}

public static void main(String [] args) {

int[] a = { 0, 1 };

a = addOne(a);

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

}

}

}

Prints 0 0, since new memory is allocated, automatically initialised
and returned to replace the original array reference in main.

What does it print?

public class AddOne {

public static int[] addOne(int[] anArray) {

anArray = new int [2];

return anArray;

}

public static void main(String [] args) {

int[] a = { 0, 1 };

a = addOne(a);

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

}

}

}

Prints 0 0, since new memory is allocated, automatically initialised
and returned to replace the original array reference in main.

Immutability

Side effects can be dangerous. You can take precautions by using
immutables.

An immutable object cannot change its state after it has been
created, e.g. String, Integer, etc.

Circle and Car are mutable.

Immutability allows other fancy things such as interning and
copying the object by simply copying the references.

Immutability

Side effects can be dangerous. You can take precautions by using
immutables.

An immutable object cannot change its state after it has been
created, e.g. String, Integer, etc.

Circle and Car are mutable.

Immutability allows other fancy things such as interning and
copying the object by simply copying the references.

Objects ...

I have a static (compile-time) type defined inside a class

I are instances of classes created at runtime

I are created using a constructor and the new keyword

I are reference types

I reside on the heap memory rather than the stack

Cleaning up the Heap

public class AddOne {

public static void addOne(int[] anArray) {

anArray = new int [2];

}

public static void main(String [] args) {

int[] a = { 0, 1 };

addOne(a);

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

}

}

}

A new array is allocated on the Heap in function AddOne.

What happens to its memory when the function
returns?

Cleaning up the Heap

If objects on the Heap are no longer referenced by anyone, an
automatic process called garbage collection cleans it up.

Without the cleanup, the AddOne function would leak memory
every time it is called until:

java.lang.OutOfMemoryError: Java Heap Space

Objects containing Objects

// Allocate space for 5 refs to Circles:

Circle[] someCircles = new Circle[5];

Stack

someCircles

Heap

null

null

null
null
null

An array of objects is automatically initialised with null.

To fill it, space for each object needs to be allocated explicitly.

Objects containing Objects

// Allocate space for 5 refs to Circles:

Circle[] someCircles = new Circle[5];

Stack

someCircles

Heap

null

null

null
null
null

An array of objects is automatically initialised with null.

To fill it, space for each object needs to be allocated explicitly.

Objects containing Objects

// Allocate space for 5 refs to Circles:

Circle[] someCircles = new Circle[5];

someCircles[2] = new Circle(10);

Stack

someCircles

Heap

null

null

null
null

10radius

An array of objects is automatically initialised with null.

To fill it, space for each object needs to be allocated explicitly.

Objects containing Objects

Car offender = new Car();

TowTruck truck = new TowTruck(offender);

Stack

offender

Heap

truck
false

0

0.5

running
speed
petrol

false

0

0.5

running
speed
petrol
cargo

The same is true for class instances containing other class
instances.

Shallow vs. Deep Copy

Circle[] someCircles = new Circle[5];

for(int i = 0; i < someCircles.length; i++)

someCircles[i] = new Circle(i * 10);

Circle[] shallowCopy = new Circle[5];

for(int i = 0; i < shallowCopy.length; i++)

shallowCopy[i] = someCircles[i];

Circle[] deepCopy = new Circle[5];

for(int i = 0; i < deepCopy.length; i++)

deepCopy[i] = new Circle(someCircle[i].radius);

Careful when copying objects containing objects:

I shallow copy copies only the references of the contained
objects

I deep copy also creates new memory for the contained objects
and copies the state

Objects ...

I have a static (compile-time) type defined inside a class

I are instances of classes created at runtime

I are created using a constructor and the new keyword

I are reference types

I reside on the heap memory rather than the stack

I are destroyed automatically by the garbage collector

Summary

I JVM manages memory in two different areas
I Stack: for local variables
I Heap: for objects

I Watch out with recursion and function side effects

I An object variable containing null references no memory

I Stack frames are cleaned once the function scope is left

I Garbage collection cleans up the heap

I Immutable objects cannot change their state once initialised

I Watch out with Deep Copy vs Shallow Copy

Reading

Java Tutorial
as before: you could read up to end of Chapter 4 but will
encounter some new material there.

Blog article about Heap and Stack:

https://www.journaldev.com/4098/

java-heap-space-vs-stack-memory

https://www.journaldev.com/4098/java-heap-space-vs-stack-memory
https://www.journaldev.com/4098/java-heap-space-vs-stack-memory

