
Inf1B
Creating Classes

Perdita Stevens
adapting earlier versions by Ewan Klein, Volker Seeker, et al.

School of Informatics

Creating classes

Last time we saw how to use a class:

I create a new object, using new;

I send the object messages from its interface, to invoke its
behaviour;

I we understood that the object might change its state;

I and that state and behaviour interdepend;

I but we did not expect to have access to the state, and we did
not know or need to care exactly how the behaviour was
implemented.

This time we will see how to define a class, including its state and
behaviour, and how new objects should be created.

Classes and Clients

instance methods

constructor

instance variables

Class Foo

Classes and Clients

instance methods

constructor

instance variables

Class Foo

main {

 Foo f = new Foo(...);
 baz = f.doSomething();

}

Class FooTester

client of Foo

Classes and Clients

Client code:

I In general, a client program calls a method of some class C.

I Example: class FooTester is a client of Foo because it calls
the doSomething() instance method on Foo objects.

Test-first design methodology:

1. Think about the methods a client would call on instances of
class C.

2. Design the API for class C.

3. Implement a client CTester for C which tests the desired
behaviour.

4. Implement C so that it satisfies CTester.

Classes and Clients

Client code:

I In general, a client program calls a method of some class C.

I Example: class FooTester is a client of Foo because it calls
the doSomething() instance method on Foo objects.

Test-first design methodology:

1. Think about the methods a client would call on instances of
class C.

2. Design the API for class C.

3. Implement a client CTester for C which tests the desired
behaviour.

4. Implement C so that it satisfies CTester.

CircleTester
I Create a Circle object c1.

I Call a method to get the area of that object: c1.getArea()

public class CircleTester {

 public static void main(String[] args) {
 Circle c1 = new Circle();
 double area1 = c1.getArea();
 System.out.printf("Area of circle c1 is %5.2f\n", area1);

 Circle c2 = new Circle(5.0);
 double area2 = c2.getArea();
 System.out.printf("Area of circle c2 is %5.2f\n", area2);
 }
}

Expected Output

% java CircleTester

Area of circle c1 is 3.14

Area of circle c2 is 78.54

The Circle Class

: Instance Methods

instance methods

}

constructor

instance variables

public class Circle {

I getArea() is an instance method of the class Circle.

I How does it know about radius?

The Circle Class: Instance Methods

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

constructor

instance variables

public class Circle {

I getArea() is an instance method of the class Circle.

I How does it know about radius?

The Circle Class: Instance Methods

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

constructor

instance variables

public class Circle {

I getArea() is an instance method of the class Circle.

I How does it know about radius?

The Circle Class: Instance Variables

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

constructor

 private double radius;

public class Circle {

I radius is an instance variable of the class Circle.

I Instance variables are declared outside methods and have
scope over the whole class.

I An instance method of a class can use any instance variable of
that class.

I Instance variables do not have to be initialised; they get
default values (e.g., 0 for int, false for boolean, null for all
reference types).

I How does a Circle object’s radius get set?

The Circle Class: Instance Variables

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

constructor

 private double radius;

public class Circle {

I radius is an instance variable of the class Circle.
I Instance variables are declared outside methods and have

scope over the whole class.

I An instance method of a class can use any instance variable of
that class.

I Instance variables do not have to be initialised; they get
default values (e.g., 0 for int, false for boolean, null for all
reference types).

I How does a Circle object’s radius get set?

The Circle Class: Instance Variables

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

constructor

 private double radius;

public class Circle {

I radius is an instance variable of the class Circle.
I Instance variables are declared outside methods and have

scope over the whole class.
I An instance method of a class can use any instance variable of

that class.

I Instance variables do not have to be initialised; they get
default values (e.g., 0 for int, false for boolean, null for all
reference types).

I How does a Circle object’s radius get set?

The Circle Class: Instance Variables

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

constructor

 private double radius;

public class Circle {

I radius is an instance variable of the class Circle.
I Instance variables are declared outside methods and have

scope over the whole class.
I An instance method of a class can use any instance variable of

that class.
I Instance variables do not have to be initialised; they get

default values (e.g., 0 for int, false for boolean, null for all
reference types).

I How does a Circle object’s radius get set?

The Circle Class: Instance Variables

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

constructor

 private double radius;

public class Circle {

I radius is an instance variable of the class Circle.
I Instance variables are declared outside methods and have

scope over the whole class.
I An instance method of a class can use any instance variable of

that class.
I Instance variables do not have to be initialised; they get

default values (e.g., 0 for int, false for boolean, null for all
reference types).

I How does a Circle object’s radius get set?

The Circle Class: Constructors

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

 public Circle(double newRadius){
 radius = newRadius;
 }

 private double radius;

public class Circle {

Constructor

I has same name as the class;

I used to initialise an object that has been created: new

Circle(5.0);

I must not have a return type (not even void).

The Circle Class: Constructors

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

 public Circle(double newRadius){
 radius = newRadius;
 }

 private double radius;

public class Circle {

Constructor

I has same name as the class;

I used to initialise an object that has been created: new

Circle(5.0);

I must not have a return type (not even void).

The Circle Class: Constructors

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

 public Circle(double newRadius){
 radius = newRadius;
 }

 private double radius;

public class Circle {

Constructor

I has same name as the class;

I used to initialise an object that has been created: new

Circle(5.0);

I must not have a return type (not even void).

The Circle Class: Anatomy

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

 public Circle(double newRadius){
 radius = newRadius;
 }

 private double radius;

public class Circle {

instance variable declaration

constructor

instance method

instance variable

instance variable

constructor name

The Circle Class: Constructors

Alternative notation:

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

 public Circle(double radius){
 this.radius = radius;
 }

 private double radius;

public class Circle {

instance
variable

parameter

The Circle Class: Client

 public double getArea(){
 return radius * radius * Math.PI;
 }
}

 public Circle(double radius){
 this.radius = radius;
 }

 private double radius;

public class Circle {

 public static void main(String[] args) {
 Circle c1 = new Circle(1.0);
 double area1 = c1.getArea();
 System.out.printf("Area of circle c1 is %5.2f\n", area1);

 Circle c2 = new Circle(5.0);
 double area2 = c2.getArea();
 System.out.printf("Area of circle c2 is %5.2f\n", area2);
 }

Class CircleTester

client of Circle

Interim Summary
We looked at:

I using client programs to motivate our classes, and to test
them

I instance variables:
I represent data that is particular to an object (i.e., an

instance!);
I have scope over the whole class;
I can hold mutable state;
I can be manipulated by any instance method in the class.

I instance methods:
I like static methods, but can only be called on some object o;
I have access to the data that is specific to o.

I constructors:
I we create a new object of class Foo with the keyword new;
I we initialise an object of type Foo by calling the constructor

for that type;
I the constructor is used to store data values in the object’s

instance variables.

Let’s practise that

https://www.theodysseyonline.com/your-brain-is-muscle-exercise-it

What does it print?

public class Number {

public int x;

public Number () { }

}

public class Main {

public static void main(String [] args) {

Number a = new Number ();

System.out.println(a.x);

a.x = 4;

System.out.println(a.x);

Number b = a;

b.x = 5;

System.out.println(a.x);

}

}

Prints 0 4 5 because default initialisation of int and copying
reference rather than object.

What does it print?

public class Number {

public int x;

public Number () { }

}

public class Main {

public static void main(String [] args) {

Number a = new Number ();

System.out.println(a.x);

a.x = 4;

System.out.println(a.x);

Number b = a;

b.x = 5;

System.out.println(a.x);

}

}

Prints 0 4 5 because default initialisation of int and copying
reference rather than object.

What does it print?

public class Operation{

public int data;

public Operation(int d) {

data = d;

}

public void change(int d){

data = d + 100;

}

}

public class Main {

public static void main(String [] args){

Operation op = new Operation (50);

System.out.println("before change " + op.data);

op.change (500);

System.out.println("after change " + op.data);

}

}

Prints before change 50 - after change 600 because old data
value is replaced.

What does it print?

public class Operation{

public int data;

public Operation(int d) {

data = d;

}

public void change(int d){

data = d + 100;

}

}

public class Main {

public static void main(String [] args){

Operation op = new Operation (50);

System.out.println("before change " + op.data);

op.change (500);

System.out.println("after change " + op.data);

}

}

Prints before change 50 - after change 600 because old data
value is replaced.

What does it print?

public class Person {

public String name;

public Person () { }

public void assignName(String n) {

if (name.length () == 0) name = n;

}

}

public class Main {

public static void main(String [] args) {

Person p = new Person ();

p.assignName("Lee");

System.out.println(p.name);

}

}

Runtime error NullPointerException because default value of name
is null.

What does it print?

public class Person {

public String name;

public Person () { }

public void assignName(String n) {

if (name.length () == 0) name = n;

}

}

public class Main {

public static void main(String [] args) {

Person p = new Person ();

p.assignName("Lee");

System.out.println(p.name);

}

}

Runtime error NullPointerException because default value of name
is null.

What does it print?

public class Person {

public String name = "";

public Person () { }

public void assignName(String n) {

if (name.length () == 0) name = n;

}

}

public class Main {

public static void main(String [] args) {

Person p = new Person ();

p.assignName("Lee");

System.out.println(p.name);

}

}

Prints Lee because initialised to empty String with declaration and
then set in method.

What does it print?

public class Person {

public String name = "";

public Person () { }

public void assignName(String n) {

if (name.length () == 0) name = n;

}

}

public class Main {

public static void main(String [] args) {

Person p = new Person ();

p.assignName("Lee");

System.out.println(p.name);

}

}

Prints Lee because initialised to empty String with declaration and
then set in method.

What does it print?

public class Person {

public String name;

public Person () { }

public void assignName(String n) {

if (name.equals(null)) name = n;

}

}

public class Main {

public static void main(String [] args) {

Person p = new Person ();

p.assignName("Lee");

System.out.println(p.name);

}

}

Runtime error NullPointerException. Not even .equals can be
called on null.

What does it print?

public class Person {

public String name;

public Person () { }

public void assignName(String n) {

if (name.equals(null)) name = n;

}

}

public class Main {

public static void main(String [] args) {

Person p = new Person ();

p.assignName("Lee");

System.out.println(p.name);

}

}

Runtime error NullPointerException. Not even .equals can be
called on null.

What does it print?

public class Person {

public String name;

public Person () { }

public void assignName(String n) {

if (name == null) name = n;

}

}

public class Main {

public static void main(String [] args) {

Person p = new Person ();

p.assignName("Lee");

System.out.println(p.name);

}

}

Prints Lee because == comparison works.

What does it print?

public class Person {

public String name;

public Person () { }

public void assignName(String n) {

if (name == null) name = n;

}

}

public class Main {

public static void main(String [] args) {

Person p = new Person ();

p.assignName("Lee");

System.out.println(p.name);

}

}

Prints Lee because == comparison works.

What does it print?

public class Person {

public String name = "John Doe";

public Person(String n) {

System.out.println(name);

name = n;

}

}

public class Main {

public static void main(String [] args) {

Person p = new Person("Lee");

System.out.println(p.name);

}

}

Prints John Doe - Lee. Initialisation with declaration is executed
before the constructor body.

What does it print?

public class Person {

public String name = "John Doe";

public Person(String n) {

System.out.println(name);

name = n;

}

}

public class Main {

public static void main(String [] args) {

Person p = new Person("Lee");

System.out.println(p.name);

}

}

Prints John Doe - Lee. Initialisation with declaration is executed
before the constructor body.

Let’s look at a longer example.

Hotel Reservation System

Goal: create a data type to manage hotel bookings

I Each hotel room has a number and a room rate.

I Each hotel room is associated with a representation of the
days of a single month, indicating which days the room has
already been booked for.

Hotel Reservation System: Client

public class HotelRoomReserver {

 public static void main(String[] args) {
 int startDate = Integer.parseInt(args[0]);
 int duration = Integer.parseInt(args[1]);

 HotelRoom rm1 = new HotelRoom(1, 65);
 HotelRoom rm2 = new HotelRoom(2, 65);
 HotelRoom rm3 = new HotelRoom(3, 75);
 HotelRoom[] rooms = { rm1, rm2, rm3 };

 for (int i = 0; i < rooms.length; i++) {
 HotelRoom r = rooms[i];
 if (r.isAvailable(startDate, duration)) {
 r.printBookings();
 }
 }
 }
}

Hotel Reservation System: Client

public class HotelRoomReserver {

 public static void main(String[] args) {
 int startDate = Integer.parseInt(args[0]);
 int duration = Integer.parseInt(args[1]);

 HotelRoom rm1 = new HotelRoom(1, 65);
 HotelRoom rm2 = new HotelRoom(2, 65);
 HotelRoom rm3 = new HotelRoom(3, 75);
 HotelRoom[] rooms = { rm1, rm2, rm3 };

 for (int i = 0; i < rooms.length; i++) {
 HotelRoom r = rooms[i];
 if (r.isAvailable(startDate, duration)) {
 r.printBookings();
 }
 }
 }
}

invoke constructor
create and
initialize
objects

object name

invoke method on r

Hotel Room Data Type

Goal: create a data type to manage hotel bookings
Set of values:

type value remarks

int room number
int room rate expressed in £
boolean[] booked dates true at index i iff room is booked

for day i

Hotel Room Data Type

Goal: create a data type to manage hotel bookings
API:

public class HotelRoom

HotelRoom(int num, int rate)

boolean isAvailable(int sd, int d) available from day sd

until day sd + d?
void printBookings() show bookings for

whole month
String toString() string representation

Assumptions:

I Simplify by only considering a single month;

I skip index 0 in the bookings so that indexes and days of month
line up;

I if someone is booked from day i to day j, they depart from hotel on
the morning of j, so room only has to be free on days i — (j-1).

Arrays of Objects

Array of HotelRoom objects

HotelRoom rm1 = new HotelRoom(1, 65);

HotelRoom rm2 = new HotelRoom(2, 65);

HotelRoom rm3 = new HotelRoom(3, 75);

HotelRoom[] rooms = { rm1, rm2, rm3 };

Array of HotelRoom objects: alternative

HotelRoom[] rooms = new HotelRoom[3];

rooms[0] = new HotelRoom(1, 65);

rooms[1] = new HotelRoom(2, 65);

rooms[2] = new HotelRoom(3, 75);

I Allocate memory for the array with new.

I Allocate memory for each object with new.

HotelRoom Class, version 1

public class HotelRoom {
 private final int roomNumber;
 private int roomRate;

 public HotelRoom(int num, int rate){
 roomNumber = num;
 roomRate = rate;
 }

 public boolean isAvailable(int startDate, int duration){
 return true;
 }
}

HotelRoom Class, version 1

public class HotelRoom {
 private final int roomNumber;
 private int roomRate;

 public HotelRoom(int num, int rate){
 roomNumber = num;
 roomRate = rate;
 }

 public boolean isAvailable(int startDate, int duration){
 return true;
 }
}

instance variables

constructor

instance method

More on Instance Variables

I Always use access modifier private (more on this later)

I Use modifier final for instance variables that never change
after initial assignment.

public class HotelRoom {

 private final int roomNumber;
 private int roomRate;
 .
 .
 .
 }

modifiers

Hotel Reservation System

Version 1

% java HotelReserver 12 3

Rooms available from 12 to 15

==============================

HotelRoom@5f893efe

HotelRoom@2b86c6b2

HotelRoom@1d5ee671

How do we get a more informative output string when we call
System.out.println() on a HotelRoom object?

Hotel Reservation System

Version 1

% java HotelReserver 12 3

Rooms available from 12 to 15

==============================

HotelRoom@5f893efe

HotelRoom@2b86c6b2

HotelRoom@1d5ee671

How do we get a more informative output string when we call
System.out.println() on a HotelRoom object?

HotelRoom Class, version 2

public class HotelRoom {
 private final int roomNumber;
 private int roomRate;

 public HotelRoom(int num, int rate){
 roomNumber = num;
 roomRate = rate;
 }

 public boolean isAvailable(int startDate, int duration){
 return true;
 }

 public String toString(){
 return String.format("Room Number:\t%s\nRoom Rate:\t£%s.00\n",
 roomNumber, roomRate);
 }
}

Hotel Reservation System

Version 2

% java HotelReserver 12 3

Rooms available from 12 to 15

==============================

Room Number: 1

Room Rate: £65.00

Room Number: 2

Room Rate: £65.00

Room Number: 3

Room Rate: £75.00

HotelRoom Class, version 3

public class HotelRoom {
 private final int roomNumber;
 private int roomRate;
 private boolean[] booked;

 public HotelRoom(int num, int rate){
 roomNumber = num;
 roomRate = rate;
 booked = HotelUtils.occupy();
 }

 public boolean isAvailable(int startDate, int duration){
 boolean available = true;
 for (int i = startDate; i < startDate + duration; i++) {
 available = available && !booked[i];
 }
 return available;
 }

 public String toString(){
 return String.format("\nRoom Number:\t%s\nRoom Rate:\t£%s.00",
 roomNumber, roomRate);
 }
}

call an external utility
method which randomly
flips false to true.

HotelRoom Class, version 4

public class HotelRoom {
 private final int roomNumber;
 private int roomRate;
 private boolean[] booked;

 public HotelRoom(int num, int rate){
 roomNumber = num;
 roomRate = rate;
 booked = HotelUtils.occupy();
 }

 public boolean isAvailable(int startDate, int duration){
 boolean available = true;
 for (int i = startDate; i < startDate + duration; i++) {
 available = available && !booked[i];
 }
 return available;
 }

 public void printBookings(){
 HotelUtils.displayBookings(booked);
 }

 public String toString(){
 return String.format("\nRoom Number:\t%s\nRoom Rate:\t£%s.00",
 roomNumber, roomRate);
 }
}

another external utility method

Version 4

Version 4

% Rooms available from 12 to 15

==============================

Room Number: 2

Room Rate: £65.00
1: [][X][][X][X][X][]

8: [][][X][][][][]

15: [X][][][X][][][]

22: [X][X][X][][][][X]

29: [X][X]

Recall that guests will leave on morning of 15th, so room doesn’t
have to be free on day 15.

Interim Summary

Some new features:
I We implemented a toString() method for HotelRoom:

I Java always implicitly calls this method whenever it executes
commands like System.out.println().

I Every class gets a default version of toString(), but it’s
often useful to give our own classes a more specific
implementation which gets used instead of the default.

I We created and used an array of type HotelRoom[]; i.e.
HotelRoom[] rooms = { rm1, rm2, rm3 };

More on Constructors

Circle1: Omitting the constructor

public class Circle1 {

private double radius;

public double getArea(){

return radius * radius * Math.PI;

}

}

I Circle1 c = new Circle1(1.0) — causes compile-time
error.

I Circle1 c = new Circle1() — does work
I though c.getArea() returns 0.00!

I If you don’t explicitly add a constructor, Java will
automatically add a no-argument constructor for you.

More on Constructors

Circle1: Omitting the constructor

public class Circle1 {

private double radius;

public double getArea(){

return radius * radius * Math.PI;

}

}

I Circle1 c = new Circle1(1.0) — causes compile-time
error.

I Circle1 c = new Circle1() — does work
I though c.getArea() returns 0.00!

I If you don’t explicitly add a constructor, Java will
automatically add a no-argument constructor for you.

More on Constructors

Circle again

public class Circle {

private double radius;

public Circle(double newRadius){

radius = newRadius;

}

public double getArea(){

return radius * radius * Math.PI;

}

}

I What happens if we call Circle c = new Circle()?

I This also causes a compile-time error — we only get the
no-arg default constructor if there’s no explicit constructor
already defined.

More on Constructors

Generally considered good programming style to provide a no-arg
constructor for your classes but not always practical.

No-arg Constructor: Version 1

public class Circle3 {

private double radius;

public Circle3(double newRadius){

radius = newRadius;

}

public Circle3(){

radius = 1.0;

}

public double getArea(){

return radius * radius * Math.PI;

}

}

More on Constructors

No-arg Constructor: Version 2

public class Circle4 {

private double radius;

public Circle4(double newRadius){

radius = newRadius;

}

public Circle4(){

this(1.0);

}

public double getArea(){

return radius * radius * Math.PI;

}

}

I this(1.0); — call another constructor of this class, and
supply the value 1.0.

I Must be the first line of the constructor.

Let’s practise some more

https://www.theodysseyonline.com/your-brain-is-muscle-exercise-it

What does it print?

public class Operation{

private int data;

public Operation(int d) {

data = d;

}

public void change(int data){

data = data + 100;

}

public String toString () {

return "" + data;

}

}

public class Main {

public static void main(String [] args){

Operation op = new Operation (50);

System.out.println("before change "+op.toString ());

op.change (500);

System.out.println("after change "+op.toString ());

}

}

Prints before change 50 - after change 50 because change
method modifies local field.

What does it print?

public class Operation{

private int data;

public Operation(int d) {

data = d;

}

public void change(int data){

data = data + 100;

}

public String toString () {

return "" + data;

}

}

public class Main {

public static void main(String [] args){

Operation op = new Operation (50);

System.out.println("before change "+op.toString ());

op.change (500);

System.out.println("after change "+op.toString ());

}

}

Prints before change 50 - after change 50 because change
method modifies local field.

What does it print?

public class Operation{

private int data;

public Operation(int d) {

data = d;

}

public void change(int data){

this.data = data + 100;

}

public String toString () {

return "" + data;

}

}

public class Main {

public static void main(String [] args){

Operation op = new Operation (50);

System.out.println("before change "+op.toString ());

op.change (500);

System.out.println("after change "+op.toString ());

}

}

Prints before change 50 - after change 600 because change
method modifies local field. Can be fixed with this.

What does it print?

public class Operation{

private int data;

public Operation(int d) {

data = d;

}

public void change(Operation op){

op.data = op.data + 100;

}

public String toString () {

return data + "";

}

}

public class Main {

public static void main(String [] args){

Operation op = new Operation (50);

System.out.println("before change "+op);

op.change(op);

System.out.println("after change "+op);

}

}

Prints before change 50 - after change 150 operates on
reference to itself and toString is called automatically by
System.out.println.

What does it print?

public class Operation{

private int data;

public Operation(int d) {

data = d;

}

public void change(Operation op){

op.data = op.data + 100;

}

public String toString () {

return data + "";

}

}

public class Main {

public static void main(String [] args){

Operation op = new Operation (50);

System.out.println("before change "+op);

op.change(op);

System.out.println("after change "+op);

}

}

Prints before change 50 - after change 150 operates on
reference to itself and toString is called automatically by
System.out.println.

Summary: Object Orientation

Data type: set of values and collections of operations on those
values.
In OOP: classes.
Simulating the physical world

I Java objects can be used to model real-world objects

I Not necessarily easy to choose good modelling primitives, or
to get model that reflects relevant parts of reality.

I Examples: geometric figures, hotel rooms, . . .

Extending the Java language

I Java doesn’t have a data type for every possible application.

I User-defined classes enable us to add our own abstractions.

Summary: designing a Java class

I Use client code to motivate and test classes.
I instance variables:

I represent data that is particular to an object (i.e., an
instance!);

I have scope over the whole class;
I can hold mutable state;
I can be manipulated by any instance method in the class.

I instance methods:
I like static methods, but can only be called on some object o;
I have access to the data that is specific to o.

I constructors:
I we create a new object of class Foo with the keyword new;
I we initialise an object of type Foo by calling the constructor

for that type;
I the constructor can be used to store data values in the object’s

instance variables.

Reading

Objects First

Chapter 2 Understanding Class Definitions

Java Tutorial
pp99-121, i.e. continuing with Chapter 4 Classes and Objects,
stopping at Nested Classes
We haven’t talked about inheritance or interfaces (yet), but
everything else should be looking familiar.

