
Informatics 1: Object Oriented Programming

Getting Started
Volker Seeker (volker.seeker@ed.ac.uk)
Vidminas Vizgirda (s1750767@ed.ac.uk)

Before you start writing your own code, you will need to make sure that you are comfortable with the
basics of the development tools that we will be using. This note describes how to download and run a very
simple Java example using these tools. This will check that you have everything correctly installed. You
will then be able to create and run a simple program using IntelliJ.

1 Development Tools

Task 1 - Read the note which describes the Development Tools ◁ Task

If you intend to use your own machine, you will need to download and install these tools. If you only
intend to use the Informatics DICE machines, then this software is already installed - but you should still
read the note so that you understand the tools that you will be using, and any necessary configuration.

2 Using IntelliJ

The instructions below will walk through getting started step-by-step and some screenshots illustrating the
steps are included further below.

Task 2 - Open the ‘Java Programming Basics’ course in IntelliJ ◁ Task

From the IntelliJ welcome menu, if the JetBrains Academy plugin is correctly installed, you will be able to
select ‘My Courses’.

If you have previously already opened a project, the welcome menu won’t appear when opening IntelliJ,
but you can get back to it by closing the current project by selecting File Close Project .

From here, click Start New Course and find the ‘Java Programming Basics’ course under the ‘Marketplace’
tab. You may need to use the search bar to find it, e.g., by typing “Java”. If prompted whether to trust and
open the project, it should be safe to click Trust Project and proceed.

1



Figure 1: IntelliJ welcome menu

Figure 2: IntelliJ course selection

2



Figure 3: IntelliJ trust project dialog

Task 3 - Write a small test program ◁ Task

When the course opens, you will see several panels. On the left is the project file explorer, it shows all the
project files. We won’t neeed this for now. In the middle is the text editor – it will start with one file open,
which has a class with a main method with some comments and nothing else. On the right are some course
notes.

Figure 4: IntelliJ course view

If you click Run in the course notes panel, the code you have open will be compiled and executed. A new
view on the bottom of the screen will open, showing the output of your program. You can do this with the
code as it is, but it will have no output.

3



Figure 5: Blank program output screen

Traditionally, the first program that you write in a new language should just
print the message “Hello World”1. Add the line System.out.println("Hello

World!"); to the main method and click Run . Check that the output says “Hello
World!”.

Figure 6: “Hello World!” program output screen

Task 4 - Complete part of the course ◁ Task

Section 1. Introduction to Programming covers a bit about Java and coding in general. Section 2. First

1https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

4

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program


steps in Java includes exercises on class syntax and printing statements. You don’t need to do the exercises
starting from variables as we will cover them in course lectures (unless you want to look ahead).

☞ Do make full use of the Piazza forum. . .
This is a valuable resource – if you get stuck, course staff and other students are often able to
help. But make sure that you describe your problem clearly and include all of the necessary
information. It is hard to answer a question which just asks “why does my program not work?”

You won’t need to finish this course, but it might be a helpful additional practice tool alongside the lab
exercises if you need it. You can always pick up from where you left off by opening the course from your
recent projects list in the welcome menu.

3 Creating a Project From Scratch

Now that you have the tools set up and have feel for basic usage of IntelliJ, you should be ready to start
writing your own code. For some exercises from labs, tutorials and assignments you might be provided
with a full project template that you can just open.

For other cases you might only get a few Java source files and unit tests (which are also only Java source
files) or nothing at all. In that situation, you can create your own blank project and add new files and
provided files as required. The following section will show you how you can do that.

Task 5 - Create a new Java Project ◁ Task

1. Open IntelliJ and create a new project from the startup screen, or from the File New Project menu.

2. Select Java . Make sure the selected Project SDK is the JDK version you have installed. Leave the
additional libraries at their default settings (nothing ticked) and press Next .

3. Do not create a project from template and select Next .

4. Give the project a name and choose a directory to store it on your hard disk. Leave the rest as it is and
click Finish .

This will create an empty project with a src folder, IntelliJ configuration files (.idea and .iml) and nothing
else. You can now add provided source files or create your own as described below.

Task 6 - Write a simple test program ◁ Task

1. Right-click on the source folder in the Project panel. For a Java project it is called src ➊.

2. Select New Java Class from the popup menu.

3. You can give the new class any name that you like. But if we call it HelloWorld, it will work for the
rest of this tutorial. Make sure that whatever name you use starts with a capital letter.

This will have created a skeleton source file for the main class. This is where you should put your own
code.

5



1
2

3

4

Figure 7: Creating a new project from scratch.

Edit the code ➋ so that the file contains the following . . .

1 public class HelloWorld {

2 public static void main(String[] args) {

3 System.out.println("Hello World");

4 }

5 }

If you try to copy-paste this code, you will notice that the line numbers will get copied too. You could
delete these, but then you would be missing out on a critical learning opportunity! Retyping code from
memory is a really useful exercise for learning, so avoid copy pasting code whenever you can, especially
when learning a new language or library.

While you are typing, notice the red marks which indicate syntax errors. These should disappear when you
have entered the complete program. You may also see pop-up menus offering suggested completions. The
first lab exercise will lead you through this code in more detail.

Finally . . .

There should now be a green triangle ➌ to the left (in the gutter) of the Main method. Click this and select
run HelloWorld.main() to run the program.

The message should appear in the Console ➍ at the bottom of the window.

6



4 Running programs using the command line

The lab exercises include instructions for running single-class Java programs using the command line. This
is equivalent to running code using IntelliJ’s user interface (with the green triangle button), so you don’t
need to use it, but if you want to try, this is how:

1. Create a new text file in a directory of your choice (e.g., ‘Documents/OOPExercises’) and call it ‘Hel-
loWorld.java’

2. Open the file with any text editor like Notepad or Gedit

3. Write the same Hello World program code as in the instructions above. Save and close the file

4. Open a terminal window and navigate to the same directory using a ‘cd’ command (more details
about this in the first lab sheet)

5. Run ‘ls’ to double check that you are in the correct directory – your file ‘HelloWorld.java’ should show
up

6. Run ‘javac HelloWorld.java’ to compile the code into a bytecode ‘.class’ file

7. Run ‘java HelloWorld’ to run the program

Figure 8: Step 1 is to create a ‘HelloWorld.java’ file

The benefit of running code from the command line is that you don’t need to create a whole new IDE project
to run your code. On the other hand, you won’t get any of the benefits of using an IDE like automatic
code completion and error highlighting, and running unit tests is more difficult (this is not covered in the
instructions, please use IntelliJ to work with unit tests).

7



Figure 9: Step 2 is to open the file with a text editor

Figure 10: Step 3 is to write the Hello World program code

8



Figure 11: Step 4 is to run ‘cd’ to navigate to the directory with your code. Step 5 is to check whether the
‘HelloWorld.java’ file is there using ‘ls’

Figure 12: Step 6 is to compile the Java code using ‘javac’ and step 7 is to run the program using ‘java’

9



5 Automatic Testing with JUnit

1
2

Figure 13: Configuring a Java Project for JUnit.

For nearly all exercises, you will be provided with JUnit tests so that you can quickly verify your own solu-
tions. JUnit tests are the usual .java source files which have JUnit test implementations. IntelliJ integrates
well with unit tests and has specific panels to show you a summary of test results, etc.

Task 7 - Add provided JUnit tests to your project ◁ Task

Let’s run a test for the code you have just written:

• Download the test code from the initial lab exercise called HelloWorldTest.java. You can find it on
the lab pages under the menu entry Java Files Automated Tests on the bottom left of the page.

• Copy this file into the src folder of your project using the file explorer of your operating system or
the command line. IntelliJ will automatically update the Project Panel to display the added file. ➊

• For a Java project, the JUnit library needs to be included into the classpath. If not, you will see red
error messages in the code Panel. When you hover your mouse over the junit import, you can see
error details and a suggestion to fix it, Add ‘JUnit5’ to classpath (You may have to click on More actions...

to see it if “Add ‘Junit4’ to classpath” appears instead like in the image above). ➋ Click on the quick
fix and confirm the following dialog.

• Now you can see a green arrow symbol next to the name of the test class HelloWorldTest. Once you
click and confirm, the tests will be executed for your code. ➌

10



• On the bottom of the screen, a Test Panel will open showing you green ticks if the tests passed. ➍

3

4

Figure 14: Executing JUnit tests in a Java Project.

You can find more information on how to include libraries into Java projects in the IntelliJ documentation2.

6 Conclusion

Tasks 1–7 will confirm that you have Java correctly installed and configured. If you have any problems at
this stage, it is likely due to the installation or configuration of the development tools, and you should ask
a lab demonstrator or post on the forum for help.

Congratulations on completing getting started and we hope you enjoy the course!

2https://www.jetbrains.com/help/idea/configuring-testing-libraries.html

11

https://www.jetbrains.com/help/idea/configuring-testing-libraries.html
https://www.jetbrains.com/help/idea/configuring-testing-libraries.html

	Development Tools
	Using IntelliJ
	Creating a Project From Scratch
	Running programs using the command line
	Automatic Testing with JUnit
	Conclusion

