
Informatics 1: Object Oriented Programming

Tutorial 01
Week 2: Pair Programming

Volker Seeker (volker.seeker@ed.ac.uk)
Vidminas Vizgirda (s1750767@ed.ac.uk)

1 Introduction

In this tutorial, we will practice working on algorithm problems. These are the kinds of questions that
showcase fundamental concepts of programming (and will be covered in much more detail in second year,
if you take the algorithms & data structures course). These concepts are often applicable to many kinds of
problems and will likely help you with future courses, projects and programming career.

The tutorial workshops for the Inf1B course are designed to support collaborative learning and program-
ming in groups of two or more people. Programming “in the wild” is rarely done by individuals alone.
Even if you are working as a self-employed freelancer, you will likely share sources and libraries with other
developers. It is therefore an essential skill to learn how to communicate with others about code, how
to work with and extend code written by others and how to share programming tasks amongst multiple
people.

We will start this first workshop with a technique that is commonly used in industry called pair program-
ming.

☞ While you are welcome to read through the tutorial sheet beforehand, you are not required
to prepare the exercises at home before the tutorial. The tutorials are designed as workshops
which you work through during your tutorial session. As preparation work, please focus on
keeping up with labs and lectures instead.

The tutorials are made for students of different levels – some will be joining the course after
years of programming, others will have never coded before. It will not be possible to cover all
the tutorial questions in the average group – that’s okay! Focus on learning as much as you can
from each session and ask your tutors questions whenever something is unclear.

2 Warmup

Task 1 - Getting to know each other ◁ Task

The tutors will introduce an icebreaker activity. Follow their guidance.

After the activity, find other students that have the same assigned tutor as you and join them at a table.

Task 2 - Team forming time! ◁ Task

1



You will already have seen many programs before, both in last semester and in the lectures leading up to
this tutorial. However, there are many ways of looking at and understanding programs.

One such way is to imagine yourself in a role of a variable, keeping data as the program executes.

This can scale up to bigger programs with multiple variables too. To try this out in practice, pair up with
someone at your table (or join another table if needed; and if the class has an odd number of students, you
can make a group of 3).

Task 3 - Manual walkthrough ◁ Task

Once you are in pairs, take a look together at these pieces of source code and choose the role of a computer
component: one person will be the processor and perform calculations, the other will be the memory and
keep track of results (and if your group has 3 people, the third person can be a second memory unit to help
the others double check).

Your task is to “execute” the code snippets line-by-line, from top to bottom, that is – read them one by one
and try to simulate what the code does on paper (on a piece of scrap paper or you can keep track in your
head if you like, although this might be more difficult). Code is usually read right-to-left (the tutors can
clarify). Whenever encountering a variable on the right-hand side of an expression, the processor will need
to ask the memory unit(s) what the variable value is and substitute that into the line. When encountering a
variable on the left-hand side, the processor will tell the memory unit(s) what value to store in that variable.
At the end, write down what the values of each variable are. The tutors will show you an example with the
first snippet.

Example 1: LineByLine

1 public class LineByLine {

2 public static void main(String[] args) {

3 int i = 0;

4 i = i + 5;

5 i = 1 - i;

6 }

7 }

Example 2: TwoVars

1 public class TwoVars {

2 public static void main(String[] args) {

3 int i = 4;

4 int j = 3;

5 i = j;

6 j = 2;

7 }

8 }

Example 3: ChainAssign

1 public class ChainAssign {

2 public static void main(String[] args) {

3 int i = 1, j = 2, k = 3;

4 j = k = 4;

2



5 i = k = 5;

6 }

7 }

Example 4: PostIncrement

1 public class PostIncrement {

2 public static void main(String[] args) {

3 int t = 60, x = 22;

4

5 if (t++ - 60 == 0) {

6 x = 20;

7 }

8 }

9 }

Example 5: PreIncrement

1 public class PreIncrement {

2 public static void main(String[] args) {

3 int t = 60, x = 22;

4

5 if (++t - 60 == 0) {

6 x = 20;

7 }

8 }

9 }

Example 6: PostDecrementAndCompare

1 public class PostDecrementAndCompare {

2 public static void main(String[] args) {

3 int x = 22;

4 int i = x; int j = 0;

5

6 while (i-- > 0) {

7 i -= 8;

8 j++;

9 }

10 }

11 }

These exercises are an example of a “manual walkthrough”. In practice, going through code line-by-line
with the values that variables hold (the program state) in mind can often help to figure out how a program
works or identify sources of bugs.

3



3 Exercises

With the manual walkthrough problem-solving technique up your sleeves, try having a go at designing
solutions to some concrete programming problems (the kind that might even come up in an internship
interview!)

You will have about 5 minutes to work on the exercises individually, after which you will have the oppor-
tunity to discuss ideas with peers at your table.

☞ In designing a solution, avoid writing any code - instead try to explain how it would work in
the most intuitive way you can. Think using drawings, diagrams, comics, stories, bullet points,
or anything else, be creative! We will do the actual implementation later.

Task 1 - Scrabble Winner ◁ Task

This problem is about the popular board game Scrabble. If you have never played it before - it is a game
where players get pieces with letters that they use to form words in a crossword-like puzzle. Each letter is
worth a different amount of points according to this table:

A is worth 1 — B is worth 3 — C is worth 3 — D is worth 2
E is worth 1 — F is worth 4 — G is worth 2 — H is worth 4
I is worth 1 — J is worth 8 — K is worth 5 — L is worth 1

M is worth 3 — N is worth 1 — O is worth 1 — P is worth 3
Q is worth 10 — R is worth 1 — S is worth 1 — T is worth 1
U is worth 1 — V is worth 4 — W is worth 4 — X is worth 8

Y is worth 4 — Z is worth 10

A word is worth the amount of points that its letters add up to.

For example, the word ”gear” is worth 2 + 1 + 1 + 1 = 5 points.

Other possible word examples could be ”apple” (9 points), ”queen” (14 points), ”koala” (9 points), ”object”
(17 points), etc.

Try thinking of an algorithm that takes a word as input and outputs the number of points that the word is
worth.

Hint: consider the input word as an array of characters, so you can process the characters one by one...

[Fun fact: In 2015 a man from New Zealand memorized every French word in the French scrabble dictionary
and won the French Scrabble Championship. He still doesn’t speak any French. https://www.npr.org/

sections/thetwo-way/2015/07/21/424980378/winner-of-french-scrabble-title-does-not-speak-french]

Task 2 - Is it weekend yet? ◁ Task

1Image source: https://localscrabble.files.wordpress.com/2011/11/scrabble.jpg

4

https://www.npr.org/sections/thetwo-way/2015/07/21/424980378/winner-of-french-scrabble-title-does-not-speak-french
https://www.npr.org/sections/thetwo-way/2015/07/21/424980378/winner-of-french-scrabble-title-does-not-speak-french
https://localscrabble.files.wordpress.com/2011/11/scrabble.jpg


Figure 1: Scrabble1

Figure 2: Weekend Face2

Given a day of the week (as a string) and a integer number n, determine
whether n days later is a weekend (Saturday or Sunday).

If so, print ”WEEKEND!” otherwise print ”not weekend yet...” to stan-
dard output.

For example, given the inputs ”Monday” and 2, your algorithm should
figure that 2 days from Monday is Wednesday and so print ”not week-
end yet...”

As another example, given ”Saturday” and 1, the next day after Satur-
day is Sunday, so your algorithm should output ”WEEKEND!”.

Task 3 - Optional: esrever ◁ Task

If you went through the first two exercises like a breeze, then this is an optional harder exercise to try.
Otherwise, feel free to skip it.

Given a string containing a sentence, how would you output the sentence with the order of words in re-
verse? For example, given ”I like ice cream” the output should be ”cream ice like I”.

It may help to consider the given string as a character array.

Pair programming

Task 1 - Pairs shuffle! ◁ Task

Now pair up with another partner (either at the same desk or another, that’s up to you), but it should be

2Image source: https://www.groundzeroweb.com/wp-content/uploads/2016/10/Funny-Weekend-Memes-8.jpg

5

https://www.groundzeroweb.com/wp-content/uploads/2016/10/Funny-Weekend-Memes-8.jpg


someone different. Make sure you have a computer between the two of you. If the group is an odd number,
one person can pair up with a tutor.

Now that you have lots of ideas for the exercises above, let’s try implementing the exercises in pairs. With
your partner, count the number of Scrabble points in each other’s name. The one whose name is worth
more points will start in the role of the driver and the other will be the navigator.

Task 2 - Time to code ◁ Task

You will have about 10 minutes to implement a solution to the
first task. Then swap roles and try solving the second problem.
Everyone should now have IntelliJ installed, but if you’re fac-
ing technical difficulties this week, you can use this awesome
online tool:
https://www.jdoodle.com/online-java-compiler/

If you were wondering how to go from a string to a character
array - you can use the toCharArray function like this:

1 String sentence = "I like ice cream";

2 char[] buffer = sentence.toCharArray();

Figure 3: Let’s get to driving!3

✎ From here on, you will need to print things to standard output quite often. Typing ‘Sys-
tem.out.println();’ every time can be really tedious.. Why wasn’t it simply called ‘print’ like
in Python..? If you use IntelliJ, fear not, because you can use its “Live Templates” feature to
help. Try typing ‘sout’ and pressing enter. It should autocomplete to ‘System.out.println()’ for
you! You can use ‘psvm’ to write “public static void main(String[] args)”, which is really nifty
too. We’ll learn more useful features and shortcuts in future tutorials.

3Image source: https://www.nickfreemansolicitors.co.uk/wp-content/uploads/2016/11/child-driving.jpg

6

https://www.jdoodle.com/online-java-compiler/
https://www.nickfreemansolicitors.co.uk/wp-content/uploads/2016/11/child-driving.jpg

	Introduction
	Warmup
	Exercises

