
Informatics 1: Object Oriented Programming

Tutorial 04
Week 5: Software Testing

Volker Seeker (volker.seeker@ed.ac.uk)
Vidminas Vizgirda (s1750767@ed.ac.uk)

1 Introduction

Today’s topic is software testing. We have already seen and done lots of software testing ourselves by now
(for example, in tutorial 2, checking whether Sudoku World works after changing something also counts!)

While the worst case for a cute little game like Sudoku World is crashing, real life software defects could
be expensive or even dangerous. Software bugs can potentially cause monetary and human loss, and even
recent history is full of such examples:

• Nissan had to recall over 34 million cars from the market due to software failure in the airbag sensory
detectors. They have been linked to 11 deaths in the USA, as of January, 2018.

http://www.nissanproblems.com/takata/

• In December 2014, some of the Amazon’s third party retailers saw their product prices were reduced
to 1p due to a software glitch. Some small businesses lost up to £100,000 as a result.

https://www.theguardian.com/technology/2014/dec/16/amazon-compensate-sellers-1p-price

• In April 2015, Bloomberg Terminal in London crashed due to a software glitch. This potentially af-
fected more than 300,000 traders on financial markets and forced the UK government to postpone a
£3bn debt sale.

https://www.theguardian.com/business/2015/apr/17/uk-halts-bond-sale-bloomberg-terminals-

crash-worldwide

• On 24 April, 2015, Starbucks’ suffered a massive outage that shut down the point-of-sales systems at
stores across the U.S. and Canada. Because transactions were not working, stores gave away tea and
coffee to customers for free, which cost the company an estimated $3 to $4 million

https://www.geekwire.com/2015/starbucks-lost-millions-in-sales-because-of-a-system-refresh-

computer-problem/

2 So what can we do about it?

Writing software that can be 100% verifiably correct is infeasible in most1 cases. Programs are just too big
to check every single possible input and action!

1You can learn more about this by looking up ”Formal Verification”

1

http://www.nissanproblems.com/takata/
https://www.theguardian.com/technology/2014/dec/16/amazon-compensate-sellers-1p-price
https://www.theguardian.com/business/2015/apr/17/uk-halts-bond-sale-bloomberg-terminals-crash-worldwide
https://www.theguardian.com/business/2015/apr/17/uk-halts-bond-sale-bloomberg-terminals-crash-worldwide
https://www.geekwire.com/2015/starbucks-lost-millions-in-sales-because-of-a-system-refresh-computer-problem/
https://www.geekwire.com/2015/starbucks-lost-millions-in-sales-because-of-a-system-refresh-computer-problem/

But not all is lost – by testing the most important functionality, you can still catch lots of bugs and ensure
that this functionality works, even if it does not cover everything. Testing can only prove if bugs exist – not
their absence!

We will start by trying black box testing. Black box testing is a technique which examines the functionality
of software without peering into its internal structure or coding. The primary source of black box testing is
a specification of requirements that is stated by the customer.

Task 1 - Time to get our hands dirty ◁ Task

Get into pairs and let’s get started! For this exercise, one student in each pair will need a computer that can
run Java from the command line.

An anonymous customer has requested a black box review of their mysterious program called Digitiser.
They sent in this specification: “This is a program that should get an integer from user input and print out
the digits in that integer, one by one.”

✎ Download the BlackBoxTest.jar from the Inf1B course materials page.

You can run it from the command line using java -jar BlackBoxTest.jar

You have about 5 minutes to try various inputs and see if you can break the program!

Hint: there are multiple ways to make it crash and also for some inputs, the program does not work cor-
rectly

Now, it’s time to fix the issues you have found!

✎ The original source of the BlackBoxTest program is in a file called Digitiser.java. Download it
from the Inf1B course materials page

Optional note: there is a technique called reverse engineering, which allows you to reconstruct source code
from a given executable. With Java, this is particularly easy to do – you can open up a JAR file with an
archive manager as it is just a regular zip archive. There, you can find compiled .class files, which you
can extract and open in IntelliJ IDEA, which will de-compile them back into Java source code. We won’t be
doing it during this tutorial, but feel free to try in your own time if you wish.

Task 2 - White Box and Unit testing ◁ Task

White box testing is another software testing technique. Can you guess what it is?

It’s the opposite of black box testing in a way – instead of testing program functionality without looking at
the code, it is all about checking the internal program logic (without necessarily running the code at all).
Does a method always return the correct output for specific inputs? Can it handle a bad input or can it be
broken in some way?

Unit testing is yet another approach. It works by designing tests that check a single (hence unit) function-
ality of the program.

For example, if we had a program that returns the first element of an array of integers, we could write some
unit tests that pass in different arrays, like [1, 2, 3] or [3, 2, 1] or [0, 0] and check that the returned result is 1,
3 and 0 respectively. It would also be wise to check edge cases – what happens if you pass in an array with
just a single element, e.g. [5], or even an empty array.

2

https://course.inf.ed.ac.uk/inf1b
https://course.inf.ed.ac.uk/inf1b

☞ Note, that when a test fails, that does not necessarily mean the functionality is wrong - some-
times the test itself can be wrong too!

✎ Download the BinaryToDecimal.zip project from the Inf1B course materials page

Open the BinaryToDecimal project in IntelliJ. You will find there is a main class BinaryConverter.java

which contains all the functionality, as well as a skeleton unit test file BinaryConverterTest.java.

Your task is to fill in the unit tests (see the comments in the skeleton file for guidance). Run them and note
all issues. Then fix the problems in BinaryConverter.java until all tests pass.

The main benefit of unit testing is that once the tests are written, running them can be automated. Rather
than having to check all these inputs by hand, you can run all the checks with a tool and have it report back
to you some statistics - how many tests are passing, how many are failing and which ones.

If you test your program just once – this isn’t much of an improvement, setting up the unit testing frame-
work takes some time after all - why not just use print statements? However, in a larger project, when you
change a piece of functionality, it will often affect many other modules. It is a good idea to run tests every
time a change is made to ensure that nothing new was broken (this is called a regression). With unit tests,
this is as simple as clicking a button.

3 Air quality in the UK

It is time to see software testing in action with a real-life project!

With growing awareness about climate change, more and more data becomes available about various as-
pects of pollution. We are going to look at information published by the UK Government Department for
Environment, Food and Rural Affairs (Defra) Air Information Resources (AIR) (you can find their website
here: https://uk-air.defra.gov.uk/).

Our task will be making a program that can determine the air quality in Edinburgh on particular day based
on provided data.

3.1 Let’s find Edinburgh!

Automatic monitoring stations measure air contents at regular intervals throughout the UK.

At the time of writing this tutorial, there were 2 such stations in Edinburgh. Let’s find them ourselves!

First visit https://uk-air.defra.gov.uk/networks/find-sites.

In step 1, you will be asked to select the monitoring network. The Automatic Urban and Rural Monitoring
Network (AURN) is the one we want.

For step 2, type in the first half of an Edinburgh post code (you can use your own post code if you live in
Edinburgh, or just pick the university - its post code is EH8 9AJ, so you just want EH8). Then select the
search area to be 100 square kilometres. The interactive map should update to show a square around the
region you selected.

Finally, click ”search network”. This will bring you to a page with some information about the monitoring
sites in Edinburgh. Perhaps you have been walking past these every day without even noticing they were
there? The more you know...

3

https://course.inf.ed.ac.uk/inf1b
https://uk-air.defra.gov.uk/
https://uk-air.defra.gov.uk/networks/find-sites

What do these sites measure? You can find their latest sensor information on this page https://uk-air.

defra.gov.uk/latest/currentlevels, just click ”View by monitoring site” and look for the sites you
found earlier.

It should look something like the screenshot in figure 1.

3.2 The Daily Air Quality Index

While having data from sensors available is great, seeing values, such as 12µgm−3 of Nitrogen Dioxide isn’t
very informative or helpful for most people.

To make this data easier to understand, the Daily Air Quality Index (DAQI) is used in the UK (see figure 2
for a descriptive overview).

The overall air pollution index for a site or region is determined by the highest concentration of five pollu-
tants: Nitrogen Dioxide, Sulphur Dioxide, Ozone, Particles < 2.5µm (PM2.5) and Particles < 10µm (PM10).

Table 3 shows the details of how each pollutant contributes to the DAQI index.

For example, the Edinburgh St Leonards Street sensor on 04/02/2024 at 10:00 reported that there were
80µgm−3 of ozone in the air. Using the table you can find that this falls in the 67 − 100µgm−3 band, which
is index 3 (and that’s exactly what we see in the parentheses in figure 1). All the other pollutant figures are
also “low” on the DAQI. Edinburgh is not too bad! :)

Overall, the DAQI for Edinburgh St Leonards Street on 04/02/2024 at 10:00 would be 3, because this is the
highest index out of the 5 polluntants.

4

https://uk-air.defra.gov.uk/latest/currentlevels
https://uk-air.defra.gov.uk/latest/currentlevels

Figure 1: Edinburgh air quality data at 11am on 04/02/2024

5

Figure 2: You can find this at https://uk-air.defra.gov.uk/air-pollution/daqi

Figure 3: Table from ”Report: Update on Implementation of the Daily Air Quality Index”
(https://uk-air.defra.gov.uk/library/reports?report_id=750)

6

https://uk-air.defra.gov.uk/air-pollution/daqi
https://uk-air.defra.gov.uk/library/reports?report_id=750

Task 1 - Time to get started on our program! ◁ Task

For this exercise, get into pairs for pair programming. You can divide up the navigator and driver roles as
you like. You will have about 10 minutes to investigate the project, and 15 minutes to test it and fix any
issues. This almost certainly won’t be enough time but don’t worry! Just get as far as you can during the
tutorial.

Figure 4: Logo for UN Sustainable
Development Goal 13: Climate Ac-
tion. Reused in accordance with
“Guidelines for the use of the SDG
logo including the colour wheel,
and 17 icons”

Suppose the UK government is in a crisis – the people demand cli-
mate action and DEFRA (Department for Environment, Food and
Rural Affairs) are looking to make more use of technology to help
with monitoring climate change.

You have been taken onboard to help DEFRA automate some of
their work, so that they don’t need to map air quality sensor data to
DAQI levels by hand.

Your predecessor, a former developer, has started work on this
project, but she mysteriously disappeared before it was complete.
Luckily, the department was able to salvage the project source code
from her hard drive.

✎ Download the AirQuality.zip project from the Inf1B
course materials page

On the developer’s desk, there were some handwritten notes, including a todo list. It said:

• Investigate failing JUnit tests (run by opening each test file under src/test/java and clicking on the
green double arrows to the left of the class name at the top)

• Fill in missing functions (see TODO notes in source files)

• Test plotting sample data

• Try more recent data

• Add more tests

• What else?

3.3 Debugging tips

The AirQuality project should already be set up to include external libraries that it depends on. However,
if for some reason this doesn’t work, the following steps may help:

The libraries used by this project are:

• org.jfree:jfreechart

• com.opencsv:opencsv

• org.apache.commons:commons-collections4

• Junit5 (you already know how to set this up)

7

https://www.un.org/sustainabledevelopment/wp-content/uploads/2019/01/SDG_Guidelines_AUG_2019_Final.pdf
https://www.un.org/sustainabledevelopment/wp-content/uploads/2019/01/SDG_Guidelines_AUG_2019_Final.pdf
https://www.un.org/sustainabledevelopment/wp-content/uploads/2019/01/SDG_Guidelines_AUG_2019_Final.pdf
https://course.inf.ed.ac.uk/inf1b
https://course.inf.ed.ac.uk/inf1b

Figure 5: If lines importing code from external libraries are red and show “Cannot resolve symbol” errors

Figure 6: Click on “More actions...” and “Add Maven dependency...”

Figure 7: In the dialog that opens, click on the “Search For Artifact” tab, find and add the library

8

Task 2 - Optional: Try it with your own data set ◁ Task

There was also another document with instructions for obtaining air quality sensor data:

1. Visit https://uk-air.defra.gov.uk/data/data_selector

2. Pick search hourly networks

3. Pick measured data for data type and hit save

4. Pick a date range (at first try something small, e.g. just last week)

5. Select monitoring sites by local authority, find City of Edinburgh and select all, then save selection

6. Pick pollutant by name and select all

7. For output type, choose data to email address (CSV), type in your email address and accept the terms
and conditions (after reading them through, of course!)

8. Click ”Get Data” on the right-hand side menu

At the end of it, a handwritten scribbled note says ”You will receive two files in your email - AirQuality-
DataHourly.csv and AirQualityData15Minutes.csv. You can try opening both (with Excel or similar), but
most likely the 15 minute one will mostly have ”no data” entries, so the hourly document is much more
useful. Rename it, copy it to the project test resources directory and change the data source filename in
RealDataTest.java to use it”.

Measurements from the sensors are published daily, including the assigned DAQI band, so you can com-
pare your results with what can be found here https://uk-air.defra.gov.uk/data/DAQI-regional-

data (although this website only allows seeing the DAQI for all of Central Scotland combined only, which
may be slightly different to just Edinburgh - it should not be wildly different however, at most 1 DAQI level
apart).

Task 3 - Advanced optional: Different data sources ◁ Task

If you have managed to figure everything out, you can try using another data source from: http://www.
scottishairquality.scot/data/data-selector. This website has data from more sensors, at the time
of writing there were Edinburgh Currie, Edinburgh Glasgow Road, Edinburgh Gorgie Road, Edinburgh
Nicolson Street, Edinburgh Queensferry Road, Edinburgh Salamander St, Edinburgh St John’s Road, Edin-
burgh St Leonards, Edinburgh Tower Street.

Since this data is formatted in a different way, this will require adjusting how the data is parsed by editing
the CSVHelper class and is not part of the course, but if you are feeling particularly adventurous, feel free
to try it out.

4 Further learning

In future courses, you can choose to learn data science techniques for analysing data like this (and others)
in more interesting ways, make forecast predictions for the future, identify unusual patterns and classify
the data into different categories.

This is what powers maps forecast maps like the one at: https://uk-air.defra.gov.uk/

If you enjoyed this topic, definitely check out the courses about data science and machine learning.

9

https://uk-air.defra.gov.uk/data/data_selector
https://uk-air.defra.gov.uk/data/DAQI-regional-data
https://uk-air.defra.gov.uk/data/DAQI-regional-data
http://www.scottishairquality.scot/data/data-selector
http://www.scottishairquality.scot/data/data-selector
https://uk-air.defra.gov.uk/

Also, if you liked investigating air pollution, you can learn more on the EU Commission website https:

//ec.europa.eu/environment/air/cleaner_air/

There is an interactive map of air pollution data for most of Europe available here: http://airindex.eea.
europa.eu/

A similar map for the US can be found here: https://www.epa.gov/outdoor-air-quality-data/interactive-
map-air-quality-monitors

There are plenty of other ways in which computer science can be used for good. A good starting place
is with the United Nations Sustainable Development Goals, which you can read more about here: https:
//www.un.org/sustainabledevelopment.

Figure 8: The 17 UN Sustainable Development Goals

The content of this publication has not been approved by the United Nations and does not reflect the views of the
United Nations or its officials or Member States.

10

https://ec.europa.eu/environment/air/cleaner_air/
https://ec.europa.eu/environment/air/cleaner_air/
http://airindex.eea.europa.eu/
http://airindex.eea.europa.eu/
https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
https://www.un.org/sustainabledevelopment
https://www.un.org/sustainabledevelopment

	Introduction
	So what can we do about it?
	Air quality in the UK
	Let's find Edinburgh!
	The Daily Air Quality Index
	Debugging tips

	Further learning

