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1 Introduction

This course is about object-oriented programming and today’s topic is about the essence of this theme –
objects! In this tutorial you will practice:

• Translating word problems into object-oriented code

• Thinking about code design alternatives

• Evaluating object-oriented code written by other people

You will have seen in lectures all about creating new classes and objects, but such implementation is only
one side of the coin. The other one has... random real life things?

Figure 1: “Objects”. Image by Omar Elgabry published on Medium. © 2016 Omar Elgabry

What do the things in the picture above have in common? Well, they are all objects of sorts! The spoon, the
basketball, the shopping bag and even people (although not in all contexts!) can be seen as objects.

Object-oriented programming borrows the concept of objects from real life and simplifies it to models: ob-
jects are represented by just the properties we care about. For example, when writing a basketball simula-
tion program, we might create a ball object, which has the properties: diameter, air pressure, and roughness
(but we might not care about its colour, materials, atom composition and an infinite number of other things
that make up a real life basketball). In another context, such as an online shopping website for basketballs,
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we might include diameter, roughness, colour, and weight properties for a basketball object instead (while
ignoring the air pressure, since someone could inflate/deflate the basketball after buying it). It all depends
on context.

Identifying what the relevant objects are in a problem and what properties should represent them is object
design. It happens before implementation, perhaps in your head or perhaps on a piece of paper, and it does
not involve code, yet it is an essential part of programming.

Programming also extends real life objects: in code objects can be not only things you can see and touch,
but also abstract concepts, like time, bank accounts or events.

1.1 Worked example: dog daycare app

Suppose we were making a smartphone app that sim-
ulates a dog home. The player is the owner of this
home and takes care of the dogs that are always ei-
ther eating, sleeping, sitting or running around.

Small dogs should be kept separately from large dogs
for safety. The owner must also keep in mind that
young dogs will likely need walking much more fre-
quently than old ones, albeit this depends on the
breed too - some dogs are more independent than oth-
ers.

When the dog owners come back to pick up their
dogs, they don’t need to be too precise about find-
ing the exact dog they left - as long as the breed and
colour match up and they have roughly the same
physical characteristics, that’s good enough.

Figure 2: How to represent real life dogs by soft-
ware objects? Image by James Hartman published
on Guru99. © 2023 Guru99 Tech Pvt Ltd

In making such an app, we would need to identify the various objects from this description. These could be
the dogs, the dog owners, the dog home and the player (perhaps some more too! Can you think of any?).

What could represent each of the objects? Let’s start with dogs: we have a requirement to keep small and
large dogs separately, so we must keep track of each dog’s size. We need to know how often to walk the
dogs, so we need the age and breed of each dog. Finally, we need the colour, breed, size, and possibly age
(depending on what is meant by ‘physical characteristics’) to be able to pick a dog to return to the owners.
So altogether, we have the properties: breed, size, age, and colour (apparently the name is not important in
this evil evil dog home).

The generalisation of the properties that any dog has becomes the Dog class. Objects or “instances” of this
class are particular dogs, e.g. a small, white, 2-year-old Maltese.
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Figure 3: Dogs’ common characteristics. Image
by James Hartman published on Guru99. © 2023
Guru99 Tech Pvt Ltd

Figure 4: Dogs’ common actions. Image by James
Hartman published on Guru99. © 2023 Guru99
Tech Pvt Ltd

Figure 5: Resulting design. Image by James Hartman published on Guru99. © 2023 Guru99 Tech Pvt Ltd

Once we have decided on the classes and properties, we sometimes also have to think about how to repre-
sent the properties. Take the dog breed for example - what data type could represent a dog breed? There
are at least 3 solutions: using a string, using an enumeration, and using subclasses for each breed.

Which is best? We just learned about classes, so should we have a subclass of Dog for every dog breed,
e.g. ChowChow extends Dog ? This would work, but for this app, using subclasses would result in more code
than necessary. Keeping the breed as a string in the generic Dog class would be much simpler. Without
sub-classes, the project would also be easier to extend - when a new dog breed is introduced, we won’t
need to create a new class for it, simply creating a new instance of Dog with the appropriate string will be
enough. Enumerations might work even better, but this will be a topic for another time.

Then there could be a DogHome class. This class would probably maintain a list of Dog objects and perhaps
contain some methods for checking a dog in, when new owners come to leave one or finding a suitable dog
when the owners come back. Similarly, we would need to design all the other classes too.
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2 Exercises

For the exercises in this tutorial, let’s get into groups of 4.

Task 1 - Model the universe ◁ Task

To start off with a warmup exercise, let’s design a simulation of the entire universe (all in a day’s work for
our INF1B students!)

First, in your groups watch the “Cosmic Eye” on YouTube (https://www.youtube.com/watch?v=8Are9dDbW24).
You don’t need to take notes or remember what exactly is shown in the video, so relax and enjoy the show.

Afterwards, discuss with your teammates: what objects might there be in a simulation of the universe?
What properties would they have?

You can draw pictures or diagrams to show your model. Summarise your design in the next 5 minutes
as best you can, then swap with another team’s design to compare and discuss - what is different? Is one
design better than another?

Task 2 - Navigating a zoological maze ◁ Task

You and your team have a new project at your hands!

Edinburgh city has an impressive city zoo. The Royal Zoological Society of Scotland (RZSS) want to provide
visitors with a navigation program, that features an interactive map of the zoo with live information about
events, like animal feeding or shows.

The previous developers recently left the society before the program was finished and you have been hired
to take over the project. Before you get to bug fixing, refactoring or implementing the missing features, you
might want to consider the design of the system first.

Do you think it is well designed? If so, what makes it a good design? If not, how would you design it?
To evaluate this question, it might help to draw out a rough sketch of what classes there are and how they
interact with each other.

RZSS gave you the following diagrams and description:
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Figure 6: A section of the Edinburgh zoo map. Image
from maps-edinburgh.com. © 2024 Newebcreations

The current zoo navigation program can main-
tain the state of the zoo and print out what is
within it. The zoo itself is represented by an all-
encompassing ZooNavigator class that keeps a list
of objects in the zoo:

Some of these objects are instances of the AnimalPen
class, some are instances of the Museum class, and
some of the Restaurant class.

AnimalPens can contain one or two kinds of ani-
mals. The animal kinds can be seen on the map to
the left. There are public feeding events for brilliant
birds, monkeys, koalas and sun bears.

For now, the program just prints out a list of the
things in the zoo and when feeding events take
place.

✎ Download the ZooNavigator.zip from
the Inf1B course materials page and
open it in IntelliJ.

3 Further learning

In this tutorial we have only scratched the surface of what object design involves. There is a lot more to see
about various design practices. Here are some places that can help you learn more about it:

The SOLID principles that were mentioned in the refactoring tutorial are like a standard ruleset for good
class design. They are explained here, together with encapsulation, delegation, and other useful details:
https://www.javaguides.net/2018/08/object-oriented-design-principles-in-java.html

This is an article on when to (not) use interfaces and abstract classes: https://dzone.com/articles/when-
to-use-abstract-class-and-intreface (also see further reading links on this website)

Interfaces in more detail (e.g. why might a completely blank interface be useful): https://beginnersbook.
com/2013/05/java-interface/

A topic that often comes up in Java design discussions is composition vs inheritance (should you keep a
member class field or derive from a parent class). See for reasons why and when should you use which:
https://www.artima.com/designtechniques/compoinh.html

The second year course ”INF2-SEPP: Software Engineering and Professional Practice” will teach in-depth
about designing a software system from a set of requirements, which is a lot like what we were doing today,
but more focused on the architectural decisions.

5

http://maps-edinburgh.com/edinburgh-zoo-map
https://www.javaguides.net/2018/08/object-oriented-design-principles-in-java.html
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://beginnersbook.com/2013/05/java-interface/
https://beginnersbook.com/2013/05/java-interface/
https://www.artima.com/designtechniques/compoinh.html


Figure 7: There are lots of keywords in this comic, like “Singleton” and “Initializer”. They usually have
special meanings in Object-Oriented Programming languages. “Object World” by Manu Cornet is available
under the CC BY-NC-ND licence.
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