Inf1B
Arrays!

Fiona McNeill

adapting earlier versions by Perdita Stevens, Ewan Klein, Volker Seeker, et al.

School of Informatics

!Thanks to Sedgewick&Wayne for much of this content

http://www.cs.princeton.edu/introcs/lectures/

Arrays

Many Variables of the Same Type

How do we initialize 10 variables of the same type?

double a@, al, a2, a3, a4, a5, a6, a7, a8, a9;
a0 = 0.0;

al =
a2 =
a3 =
a4 =
a5 =
a6 =
ar’ =
a8 =
a9 =

[SEASES IS RIS RIS ISR SRS
[SECSINS RIS IS RS RS RS R S

a4 =
a4 = 8.5;

w
U

double x = a4 + a5;
M

Many Variables of the Same Type

How do we initialize 10 variables of the same type?

Much more efficient would be something like this:

double a = 0.0 X 10;

Many Variables of the Same Type

How do we initialize 10 variables of the same type?

// easy alternative
double[] a = new double[10];

Q; :
0; \ declares, creates and

initializes

a[4] = 3.
a[8] = 8.

double x = a[4] + a[8];

A\ v

Many Variables of the Same Type

How do we initialize 1 million variables of the same type?

// just as easy with large arrays
double[] a = new double[1000000];

a[123456] = 3.
a[987654] = 8.

0;
0.

)

double x = a[123456] + a[987654];
N 4

Arrays

Arrays: allow us to store and manipulate large quantities of data.
An array is an indexed sequence of values of the same type.

Examples
» 52 playing cards in a deck. index value
» 17,000 undergraduates in UoE. (1) Ffbecca
» 1 million characters in a book. 9 Bfr?)oke
» 10 million audio samples in an 3 Megan
MP3 file. 4 N.i?mh
> 4 billion nucleotides in a DNA j Eilidh
6 Eva
strand. 7 Abbie
» 90 billion Google queries per year. 8 Skye
9 Aimee

» 50 trillion cells in the human body.

(From 100 most popular Scottish girls’
names, 2007)

Arrays

First index

Element
(at index 3)

0

123/4

«—indices

<— Array length is 5 —»

What happens in memory?

primitives array
a0 0 a 0
al 0 0
a2 0 0
a3 0 0
a4 0 0

Arrays in Java

» In Java, arrays are considered objects
» They are a special kind of object
We will get back to that in later lectures ...

Arrays in Java

Java has special support for arrays:

> To make an array: declare, create and initialize it.

Declare an array

int[] arrayOfInts;

Create an array of length 10

array0fInts = new int[10];

Arrays in Java

Java has special support for arrays:
> To make an array: declare, create and initialize it.
» To access element i of array named a, use a[i].
P Array indices start at O.

int n = 10; // size of array
double[] a; // declare the array
a = new double[n]; // create the array
for (int i = 0; i < n; i++) {

a[i]l = 0.0; // initialise each elt

}

Arrays in Java

Java has special support for arrays:
> To make an array: declare, create and initialize it.
» To access element i of array named a, use a[i].

P Array indices start at O.

int n = 10; // size of array
double[] a; // declare the array
a = new double[n]; // create the array
for (int i = 0; i < n; i++) {

a[i]l = 0.0; // initialise each elt
}

Compact alternative:
» Declare, create and initialize in one statement.

int n = 10; // size of array
double[] a = new double[n]; // declare, create, init

Default Initialization of Arrays

Each array element is automatically initialized to a default value:
int: 0
double: 0.0
boolean: false

String: null

Types of Array

All elements of a given array must be of the same type.

Array Types
int []
doublel[]

String[]
char[]

Array of Strings:

String[] names = new String[5];

names[@] = "Rebecca";
names[1] = "Isla";
names[2] = "Brooke";
names[3] = "Megan";
\?ames[4] = "Niamh";

Alternative Initialization Syntax for Arrays

» Shorthand syntax for initializing arrays.

» Handy if you only have a few data items.

String[] names = {"Rebecca", "Isla", "Brooke", "Megan", "Niamh"};
int[] mynums = { @, 7, 9, 1, 4 };
\double[] morenums = { 2.5, -0.1, 33.0 }; y

The Length of Arrays

Given an array a,
» check the length of the array: a.length
> first element is a[0]
» second element is a[1]
> ..
P last element is ala.length-1]
>

If an array index is too small or too large, Java throws
run-time error: ArrayIndexOutOfBoundsException

Arrays: Another Example

public class ArrayEx {
public static void main(String[] args) {
String[] names = { "Rebecca", "Isla", "Brooke", "Megan", "Niamh" };
System.out.println(names.length);
System.out.println(names[1]);
System.out.println(names[names.length]);

/e

Arrays: Another Example

public class ArrayEx {
public static void main(String[] args) {
String[] names = { "Rebecca", "Isla", "Brooke", "Megan", "Niamh" };
System.out.println(names.length);
System.out.println(names[1]);
System.out.println(names[names.length]);

}
}—

Arrays: Another Example

public class ArrayEx {
public static void main(String[] args) {
String[] names = { "Rebecca", "Isla", "Brooke", "Megan", "Niamh" };
System.out.println(names.length);
System.out.println(names[1]);
System.out.println(names[names.length]);

}
}—

5
Isla

Arrays: Another Example

public class ArrayEx {
public static void main(String[] args) {
String[] names = { "Rebecca", "Isla", "Brooke", "Megan", "Niamh" };
System.out.println(names.length);
System.out.println(names[1]);
System.out.println(names[names.length]);

}
}—

5
Isla
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsExcept

Arrays: Another Example

public class ArrayEx {
public static void main(String[] args) {
String[] names = { "Rebecca", "Isla", "Brooke", "Megan", "Niamh" };
System.out.println(names.length);
System.out.println(names[1]);
System.out.println(names[names.length]);

5
Isla
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsExcept

To get at last element, use names [names.length-1].

Vector Dot Product

Dot Product: Given two vectors x[] and y[] of length n, their dot
product is the sum of the products of their corresponding

components.
double[] x = { 0.3, 0.6, 0.1 };
double[J y = { 0.5, 0.1, 0.4 };
double sum = 0.0;
for (int 1 = 0; i < x.length; i++) {

sum = sum + x[i] * y[i];

}

-
o
[
o
o
=
o
o
o
(0]
o
N
[

Array-processing Examples

Create an array with random values

Array-processing Examples

Create an array with random values

double[] a = new doublel[n];

for (int i = 0; i < a.length; i++) {
a[i] = Math.random();

}

Array-processing Examples

Create an array with random values

double[] a = new doublel[n];

for (int i = 0; i < a.length; i++) {
a[i] = Math.random();

}

Print the array values, one per line

Array-processing Examples

Create an array with random values

double[] a = new doublel[n];

for (int i = 0; i < a.length; i++) {
a[i] = Math.random();

}

Print the array values, one per line

for (int i = 0; i < a.length; i++) {
System.out.println(alil);
}

Array-processing Examples

Create an array with random values

double[] a = new doublel[n];

for (int i = 0; i < a.length; i++) {
a[i] = Math.random();

}

Print the array values, one per line

for (int i = 0; i < a.length; i++) {
System.out.println(alil);
}

Find the maximum of the array values

Array-processing Examples

Create an array with random values

double[] a = new doublel[n];

for (int i = 0; i < a.length; i++) {
a[i] = Math.random();

}

Print the array values, one per line

for (int i = 0; i < a.length; i++) {
System.out.println(alil);
}

Find the maximum of the array values

double max = a[0];
for (int i 1; i < a.length; i++) {
if (a[i] > max) max = alil;

}

Array-processing Examples

Copy one array to another.

Array-processing Examples

Copy one array to another.

double[] a = {0.3, 1.2, 1.7, 0.4, 1.5};

double[] b = new doublel[a.lengthl];

for (int i = 0; i < a.length; i++) {
b[i]l = a[il;

}

Dot Product

Fill in the blanks for an algorithm to calculate the dot product of 2
vectors, a and b.

Dot Product

Fill in the blanks for an algorithm to calculate the dot product of 2
vectors, a and b.

(N

double[] a = {0.3,
double[] b =

|
-~
o
()]

double sum=0.0;

for (/* BLANK 1 x/) {
/* BLANK 2 */

}

System.out.println (sum) ;

Dot Product

Fill in the blanks for an algorithm to calculate the dot product of 2
vectors, a and b.

e N

double[] a = {0.3,

6, 0.1};
double[] b = 1

0.
0.1, 0.4};

|
-~
o
()]

double sum=0.0;

for (int i=0; i < b.length; i++) {
sum = sum + al[i] * b[il;

}

System.out.println (sum) ;

Average

Fill in the blanks for an algorithm to calculate the average value of
an array of doubles.

Average

Fill in the blanks for an algorithm to calculate the average value of
an array of doubles.

7

double[] data = {0.3, 1.2, 1.7, 0.4, 1.5};
/* BLANK 1 x/

for (int i = 0; i < data.length; i++) {
/* BLANK 2 x/
}

System.out.println(/* BLANK 3 */);

Average

Fill in the blanks for an algorithm to calculate the average value of
an array of doubles.

4 N

double[] data = {0.3, 1.2, 1.7, 0.4, 1.5};
double sum = 0.0;

for (int i = 0; i < data.length; i++) {
sum += datalil;

}

System.out.println(sum / data.length);

Setting Array Values at Run Time

Print a random card.

Str'lng[] rank = { "2", n3vv’ u4u’ "5", "6", n?u’ "8",
"9"’ "10", "Jack", "Queen", "K‘i.ng", "Ace" };

String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };

int i = (int) (Math.random() * 13); // between 0 and 12
int j = (int) (Math.random() * 4); // between 0 and 3

éystem.out.pr‘intln(r‘ank[i] + " of " + suit[j1); y
7 of Spades

Jack of Diamonds

Setting Array Values at Run Time

' typical array-processing
String[] deck = new String[52];

code changes values at
for (int i = @; i < 13; i+ { /rumime
for (int j = 0; j < 4; j++) {

deck[4 * i + j] = rank[i] + " of " + suit[j];
}
}
for (int k = 0; k < deck.length; k++) {
System.out.println(deck[k]);

\
Q: In what order does the program print the deck?

2 of Clubs 2 of Clubs
2 of Diamonds 3 of Clubs
2 of Hearts 4 of Clubs
2 of Spades 5 of Clubs
3 of Clubs 6 of Clubs

Remark on hard-wired constants

String[] suit = { "Clubs", "Diamonds", "Hearts",

"Spades" };
String [] rank = { ||2"’ ||3||’ ||4||, "5", "6"’ "7"’
Il8|l’ llgll’ "10"’ "Jack"’ IIQueenll’ "King"’ IlAce" };

String[] deck = new Stringl[52];
for (int i = 0; i < 13; i++) {
for (int j = 0; j < 4; j++) {
deck[4 * i + j] = rank[i] + "jofy" + suit[j];
}
}

for (int k = 0; k < 52; k++) {
System.out.println(deck[k]);
}

suit and rank are intended to stay fixed throughout the program,
and 52 should be the product of their lengths. But those facts are

not yet enforced...

Remark on hard-wired constants

.

final String([] SUIT = { "Clubs", "Diamonds", "Hearts",

"Spades" };
flnal String [] RANK = { ||2ll’ ll3|l’ II4||’ ll5|l’ ll6ll’ |I7Il,
"8"’ llgll’ "10"’ "Jack"’ ||Queen||’ "King“’ llAce" };

final int CARDS = SUIT.length * RANK.length;

String[] deck = new String[CARDS];
for (int i = 0; i < 13; i++) {
for (int j = 0; j < 4; j++) {
deck([4 * i + j] = RANK[i] + "jof_" + SUIT[jIl;
}
}

for (int k = 0; k < CARDS; k++) {
System.out.println(deck[k]);
}

\.

Use a local constant value instead!
The final keyword allows only a single initialisation of that
variable. Further attempts to change it are caught by the compiler.

Remark on hard-wired constants

final Stringl[] SUIT
"Spades" };

final String [] RANK { l|2"’ |l3||’ ||4|l, ll5|l, ll6|l’ "7"’
Il8|l’ llgll’ "10"’ "Jack"’ IIQueenll’ IlKing"’ IlAce" };

{ "Clubs", "Diamonds", "Hearts",

final int SUITS SUIT.length;
final int RANKS RANK.length;
final int CARDS = SUITS * RANKS;

String[] deck = new String[CARDS];
for (int i = 0; i < RANKS; i++) {
for (int j = 0; j < SUITS; j++) {
deck [SUITS * i + jl = RANK[il + ",Lof," + SUIT[j];
}
}

for (int k = 0; k < CARDS; k++) {
System.out.println(deck[k]);
}

\ J

Constants also improve readability and get rid of "magic" numbers.

Remark on hard-wired constants

There are other ways to deal with this situation such as using
global constants, functions or even enums. But more about that
later ...

Do not blindly replace every “magic number” by a named constant
(e.g. don't replace 0 by ZERO!)
Think about what you are trying to achieve.

1. Make the program easy to comprehend (readability).

2. Make foreseeable changes as easy as possible
(maintainability).

Shuffling

Given an array, rearrange its elements in random order.
Shuffling algorithm:

1. In iteration i, pick random card from deck[i] through
deck [CARDS-1], with each card equally likely.

2. Exchange it with deck[i].

Shuffling

Given an array, rearrange its elements in random order.
Shuffling algorithm:

1. In iteration i, pick random card from deck[i] through
deck [CARDS-1], with each card equally likely.

2. Exchange it with deck[i].

for (int i = 0; i < CARDS; i++) {
int randCard = i + (int) (Math.random() * (
CARDS - i));
String temp = deck[randCard];
deck [randCard] = deck[i];
deck[i] = temp;
}

Shuffling a Deck of Cards: Putting Everything Together

public class Deck {
public static void main(String([] args) {

final String[] SUIT = { "Clubs", "Diamonds", "Hearts", "Spades" };
final String[] RANK = { "2", "3%, ngw wgn wgn wgn,
wgm, mgm, wio", "Jack", "Queen", "King", "Ace" };

final int SUITS = SUIT.length;
final int RANKS = RANK.length;
final int CARDS = SUITS * RANKS;

String[] deck = new String[CARDS];
for (int i = 0; i < RANKS; i++) {
for (int j = 0; j < SUITS; j++) {
deck [SUITS * i + jl = RANK[i] + "_of_ " + SUIT[jl;
}
¥
for (int i = 0; i < CARDS; i++) {
int randCard = i + (int) (Math.random() * (CARDS - i));
String temp = deck[randCard];
deck [randCard] = deck[i];
deck[i] = temp;
}
for (int k = 0; k < CARDS; k++) {
System.out.println(deck[k]);
}
}
}

Shuffling a Deck of Cards

% java Deck % java Deck

Jack of Clubs 4 of Spades

4 of Spades 2 of Diamonds

5 of Clubs 5 of Hearts

10 of Diamonds 7 of Diamonds

2 of Hearts 3 of Hearts
Queen of Clubs 10 of Hearts

8 of Hearts 2 of Clubs

5 of Hearts King of Diamonds
3 of Clubs Queen of Diamonds
7 of Hearts 10 of Clubs

10 of Hearts 3 of Spades

6 of Hearts 7 of Hearts

Jack of Spades 8 of Clubs

3 of Hearts 3 of Clubs

Two-Dimensional Arrays

Examples of two-dimensional arrays:
» Table of data for each experiment and outcome.
> Table of grades for each student and assignment.
> Table of grayscale values for each pixel in a 2D image.

Mathematical abstraction: matrix
Java abstraction: 2D Array

Two-Dimensional Arrays in Java

Array access: Use a[i] [j] to access element in row i and column
j. Zero-based indexing: Row and column indices start at O.

int m = 10;

. alll1]

int n = 3; N e
double[][] a = new double[n] [n] ! afoated | afeatil | afeatal |
for (int i = 0; i < m; i++) { | a[1][0] | a[11[1] | a[1][2] |

for (int j = 0; j < mnj; j++) { = “oooooommmomoemmoooomoooees

alilfj] = 0.0; | o lmem el
} I'a[31[0] | a[31[1] | a[3][2] |

B

¥
Initialize a 10-by-3 array of doubles

A 10-by-3 array

Setting 2D Array Values at Compile Time

Initialize 2D array of doubles by listing values. Each element of the
array p is itself an array of type double[].

double[J[] p = {

.02, .92, .02, .02, .02 %,
.02, .02, .32, .32, .32},
.02, .02, .02, .92, .02},
.92, .02, .02, .02, .02 %,
.47, .02, .47, .02, .02 },

e e e

35

0.02 0.92 0.02 0.02 0.02
0.02 0.02 0.32 0.32 0.32
0.02 0.02 0.02 0.92 0.02
0.92 0.02 0.02 0.02 0.02
0.47 0.02 0.47 0.02 0.02

Setting 2D Array Values at Compile Time

Initialize 2D array of doubles by listing values. Each element of the
array p is itself an array of type double[].

double[J[] p = {

.02, .92, .02, .02, .02 %,
.02, .02, .32, .32, .32},
.02, .02, .02, .92, .02},
.92, .02, .02, .02, .02 %,
.47, .02, .47, .02, .02 },

e e e

35

0.02 0.92 0.02 0.02 0.02
0.02 0.02 0.32 0.32 0.32
0.02 0.02 0.02 0.92 0.02
0.92 0.02 0.02 0.02 0.02
0.47 0.02 0.47 0.02 0.02

Setting 2D Array Values at Compile Time

Initialize 2D array of doubles by listing values. Each element of the
array p is itself an array of type double[].

double[J[] p = {

.02, .92, .02, .02, .02 %,
.02, .02, .32, .32, .32},
.02, .02, .02, .92, .02},
.92, .02, .02, .02, .02 %,
.47, .02, .47, .02, .02 },

e e e

35

0.02 0.92 0.02 0.02 0.02
row 1 —>| 0.02 0.02 0.32 0.32 0.32
0.02 0.02 0.02 0.92 0.02
0.92 0.02 0.02 0.02 0.02
0.47 0.02 0.47 0.02 0.02

Setting 2D Array Values at Compile Time

Initialize 2D array of doubles by listing values. Each element of the
array p is itself an array of type double[].

double[][] p = {

{ .02, .92, .02, .02, .02 },

{ .02, .02, .32, .32, .32},

{ .02, .02, .02, .92, .02 },

{ .92, .02, .02, .02, .02 },

{ .47, .02, .47, .02, .02 },
18
| o

0.02 0.92 0.02 [0.02]0.02
row 1 —» 0.02 0.02 0.32[0.32]0.32 |
0.02 0.02 0.020.92]0.02
0.92 0.02 0.020.02|0.02
0.47 0.02 0.47[0.02/0.02

column 3
———

Setting 2D Array Values at Compile Time

Initialize 2D array of doubles by listing values. Each element of the
array p is itself an array of type double[].

double[][] p = {

{ .02, .92, .02, .02, .02 },

{ .02, .02, .32, .32, .32},

{ .02, .02, .02, .92, .02 },

{ .92, .02, .02, .02, .02 },

{ .47, .02, .47, .02, .02 },
18
| o

p[11[3]

0.02 0.92 0.020.02[0.02
row 1 —» 0.02 0.02 0.32 [0.32]0.32 |
0.02 0.02 0.02[0.92[0.02
0.92 0.02 0.020.020.02
0.47 0.02 0.47 [0.02[0.02

column 3
~———

Matrix Addition

Matrix Addition: given two n-by-n matrices a and b, define ¢ to be
the n-by-n matrix where c[i] [j] is the sum a[i] [j] + b[i] [j].

double[][] c
for (int i =

for (int j

}

cl[i] [3]

0;

new double[n] [n];
i < n; i++) {

=0; j <nmn; j+) {

alil [31 + v[i1[j1;

-

a[]l]

b[][]

c[1r]

.70

.50

.20

.10

10
.10 4
40

.80

.10

.30

.30

50
10 4
40

1.5
.40
.60

.50

40

60
.20 4

.80

a[1][2]

c[11[2]

double[][] c
for (int i =

Matrix Multiplication

Matrix Multiplication: given two n-by-n matrices a and b, define c
to be the n-by-n matrix where c[i] [j] is the dot product of the

it row of a[]1[] and the j™ column of b[][].

new doublel[n] [n];

0; i < n; i++) {

for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {

3

clil[j] += alil (k] * blk][j];

-«

a[]]

c[1r]

:

.70 .20 .10
.30 .60 .10 ’d—rowl
.50 .10 .40
colupn 2
.80 .30 .50
.10 .40 .10
.10 .30 .40
———
c1](2] =
.30 x .50 +
.60 x .10 +
.59 .32 .41 .10 x .40
.31 .36 .25 [=.25
45 31 42 [

Enhanced for loop, 1

Ordinary for loops are easy to get wrong! Often there's a better
way:

int[] numbers = {2, 5, 6, 1, 0, 5};

Ordinary for loop

for (int i = 0; i < numbers.length; i++) {
System.out.println(numbers[i]);

Enhanced for loop

for (int num : numbers)
System.out.println(num);

Enhanced for loop, 2

>
>

v

vy

Also called for-each loop, with : pronounced “in".

On each iteration, an element of the iterable gets assigned to
the loop variable.

Loop gets executed once for each element in the iterable.

Easier and more concise: no need to initialise loop counter,
increment, set termination condition...

... but less flexible; no access to the loop counter.
Use them whenever you don’t need access to the loop counter.

Typical use: when you need access to all the elements of an
array, but you don't care about their indexes.

General form:

for (variable declaration : iterable){

NB the variable must have same type as elements in iterable.

Enhanced for loop, 3

Another Example: Right

String[] words = {"hello", "world", "yes", "we", "can"};
for (String w : words) {

System.out.println(w);
}

Another Example: Wrong

String[] words = {"hello", "world", "yes", "we", "can" };
for (int w : words) {
System.out.println(w) ;

Summary

Arrays:

> Method of storing large amounts of data.

> Almost as easy to use as primitive types.

> We can directly access an element given its index.
Local Constants:

» specify constants using the final keyword to improve
maintainability and readability

Enhanced for loop:

» Good alternative to ordinary for loop where you just want to
iterate over an array, and don't care about the indexes.

Reading

Java Tutorial
pp51-57

i.e. now it's time to read carefully the section on Arrays within
Chapter 3, Language Basics, that | suggested skimming over
before.

