
Inf1B
Functions aka Static Methods

Fiona McNeill
adapting earlier versions by Perdita Stevens, Ewan Klein, Volker Seeker, et al.

School of Informatics

Functions / Static Methods

Why are functions so helpful?
Let’s consider a program that helps children save pocket money
towards a target.

Why Functions

public class Duplication0 {
 public static void main(String[] args) {
 String boyFirstName = "Jock";
 String boySecondName = "McIness";
 String boyName = boyFirstName + " " + boySecondName;
 int boyWeeklyPocketMoney = 2;
 int boySavingsTarget = 10;
 int boyWeeksToTarget = boySavingsTarget / boyWeeklyPocketMoney;
 System.out.print(boyName + " needs to save for ");
 System.out.println(boyWeeksToTarget + " weeks");

 String girlFirstName = "Jane";
 String girlSecondName = "Andrews";
 String girlName = girlFirstName + " " + girlSecondName;
 int girlWeeklyPocketMoney = 3;
 int girlSavingsTarget = 9;
 int girlWeeksToTarget = girlSavingsTarget / girlWeeklyPocketMoney;
 System.out.print(girlName + " needs to save for ");
 System.out.println(girlWeeksToTarget + " weeks");
 }
}

Why Functions

Output

$ java Duplication0

Jock McIness needs to save for 5 weeks

Jane Andrews needs to save for 3 weeks

Why Functions

Lots of duplicate code in this implementation.
public class Duplication0 {
 public static void main(String[] args) {
 String boyFirstName = "Jock";
 String boySecondName = "McIness";
 String boyName = boyFirstName + " " + boySecondName;
 int boyWeeklyPocketMoney = 2;
 int boySavingsTarget = 10;
 int boyWeeksToTarget = boySavingsTarget / boyWeeklyPocketMoney;
 System.out.print(boyName + " needs to save for ");
 System.out.println(boyWeeksToTarget + " weeks");

 String girlFirstName = "Jane";
 String girlSecondName = "Andrews";
 String girlName = girlFirstName + " " + girlSecondName;
 int girlWeeklyPocketMoney = 3;
 int girlSavingsTarget = 9;
 int girlWeeksToTarget = girlSavingsTarget / girlWeeklyPocketMoney;
 System.out.print(girlName + " needs to save for ");
 System.out.println(girlWeeksToTarget + " weeks");
 }
}

Why Functions

public class Duplication1 {

 public static String joinNames(String n1, String n2){
 return n1 + " " + n2;
 }

 public static void main(String[] args) {
 String boyName = joinNames("Jock", "McInnes");
 int boyWeeklyPocketMoney = 2;
 int boySavingsTarget = 10;
 int boyWeeksToTarget = boySavingsTarget / boyWeeklyPocketMoney;
 System.out.print(boyName + " needs to save for ");
 System.out.println(boyWeeksToTarget + " weeks");

 String girlName = joinNames("Jane", "Andrews");
 int girlWeeklyPocketMoney = 3;
 int girlSavingsTarget = 9;
 int girlWeeksToTarget = girlSavingsTarget / girlWeeklyPocketMoney;
 System.out.print(girlName + " needs to save for ");
 System.out.println(girlWeeksToTarget + " weeks");
 }
}

extract new function

call new function

Why Functions

public class Duplication2 {

 public static String joinNames(String n1, String n2){
 return n1 + " " + n2;
 }

 public static int weeksToSavePocketMoney(int pocketMoney,
 int savingsTarget){
 return savingsTarget / pocketMoney;
 }

 public static void main(String[] args) {
 String boyName = joinNames("Jock", "McInnes");
 int boyWeeksToTarget = weeksToSavePocketMoney(2, 10);
 System.out.print(boyName + " needs to save for ");
 System.out.println(boyWeeksToTarget + " weeks");

 String girlName = joinNames("Jane", "Andrews");
 int girlWeeksToTarget = weeksToSavePocketMoney(3, 9);
 System.out.print(girlName + " needs to save for ");
 System.out.println(girlWeeksToTarget + " weeks");
 }
}

extract new function

call new function

Why Functions

public class Duplication3 {

 public static String joinNames(String n1, String n2){
 return n1 + " " + n2;
 }

 public static int weeksToSavePocketMoney(int pocketMoney,
 int savingsTarget){
 return savingsTarget / pocketMoney;
 }

 public static void printWeeksToSave(String name, int target){
 System.out.print(name + " needs to save for ");
 System.out.println(target + " weeks");
 }

 public static void main(String[] args) {
 String boyName = joinNames("Jock", "McInnes");
 printWeeksToSave(boyName, weeksToSavePocketMoney(2, 10));
 String girlName = joinNames("Jane", "Andrews");
 printWeeksToSave(girlName, weeksToSavePocketMoney(3, 9));
 }
}

extract new function

call new function

Benefit of breaking a program into well-named functions

I decomposition of a complex task into simpler steps.

I hiding implementation details from the callers of a function

I reducing duplication of code within a program – Write Once,
write DRY code where you Don’t Repeat Yourself

I enabling reuse of code across multiple programs.

High-level motivation: readability and maintainability.
Get it right, keep it right.

Concrete advice:
Whenever you can clearly separate tasks within programs, you
should do so.
Aim for methods of no more than 10-15 lines. A function should
do only one thing and that thing well.

Benefit of breaking a program into well-named functions

I decomposition of a complex task into simpler steps.

I hiding implementation details from the callers of a function

I reducing duplication of code within a program – Write Once,
write DRY code where you Don’t Repeat Yourself

I enabling reuse of code across multiple programs.

High-level motivation: readability and maintainability.
Get it right, keep it right.

Concrete advice:
Whenever you can clearly separate tasks within programs, you
should do so.
Aim for methods of no more than 10-15 lines. A function should
do only one thing and that thing well.

Benefit of breaking a program into well-named functions

I decomposition of a complex task into simpler steps.

I hiding implementation details from the callers of a function

I reducing duplication of code within a program – Write Once,
write DRY code where you Don’t Repeat Yourself

I enabling reuse of code across multiple programs.

High-level motivation: readability and maintainability.
Get it right, keep it right.

Concrete advice:
Whenever you can clearly separate tasks within programs, you
should do so.
Aim for methods of no more than 10-15 lines. A function should
do only one thing and that thing well.

Benefit of breaking a program into well-named functions

I decomposition of a complex task into simpler steps.

I hiding implementation details from the callers of a function

I reducing duplication of code within a program – Write Once,
write DRY code where you Don’t Repeat Yourself

I enabling reuse of code across multiple programs.

High-level motivation: readability and maintainability.
Get it right, keep it right.

Concrete advice:
Whenever you can clearly separate tasks within programs, you
should do so.
Aim for methods of no more than 10-15 lines. A function should
do only one thing and that thing well.

Benefit of breaking a program into well-named functions

I decomposition of a complex task into simpler steps.

I hiding implementation details from the callers of a function

I reducing duplication of code within a program – Write Once,
write DRY code where you Don’t Repeat Yourself

I enabling reuse of code across multiple programs.

High-level motivation: readability and maintainability.
Get it right, keep it right.

Concrete advice:
Whenever you can clearly separate tasks within programs, you
should do so.
Aim for methods of no more than 10-15 lines. A function should
do only one thing and that thing well.

Benefit of breaking a program into well-named functions

I decomposition of a complex task into simpler steps.

I hiding implementation details from the callers of a function

I reducing duplication of code within a program – Write Once,
write DRY code where you Don’t Repeat Yourself

I enabling reuse of code across multiple programs.

High-level motivation: readability and maintainability.
Get it right, keep it right.

Concrete advice:
Whenever you can clearly separate tasks within programs, you
should do so.
Aim for methods of no more than 10-15 lines. A function should
do only one thing and that thing well.

Benefit of breaking a program into well-named functions

I decomposition of a complex task into simpler steps.

I hiding implementation details from the callers of a function

I reducing duplication of code within a program – Write Once,
write DRY code where you Don’t Repeat Yourself

I enabling reuse of code across multiple programs.

High-level motivation: readability and maintainability.
Get it right, keep it right.

Concrete advice:
Whenever you can clearly separate tasks within programs, you
should do so.
Aim for methods of no more than 10-15 lines. A function should
do only one thing and that thing well.

Modularity via Functions

Easier to change code broken down into functions.
public class Duplication4 {

 public static String joinNames(String n1, String n2){
 String title;
 if (n1 == "Jock") title = "Master";
 else title = "Miss";
 return title + " " + n1 + " " + n2;
 }

 public static int weeksToSavePocketMoney(int pocketMoney, int savingsTarget){
 double sweeties = 0.25;
 double reducedPocketMoney = pocketMoney * (1 - sweeties);
 return (int) (savingsTarget / reducedPocketMoney);
 }

 public static void printWeeksToSave(String name, int target){
 System.out.println();
 System.out.println("***");
 System.out.println(name + " needs to save for " + target + " weeks");
 }

 public static void main(String[] args) {
 String boyName = joinNames("Jock", "McInnes");
 printWeeksToSave(boyName, weeksToSavePocketMoney(2, 10));

 String girlName = joinNames("Jane", "Andrews");
 printWeeksToSave(girlName, weeksToSavePocketMoney(3, 9));
 }
}

Modularity via Functions

Output

$ java Duplication4

Master Jock McInnes needs to save for 6 weeks

Miss Jane Andrews needs to save for 4 weeks

Wrapping code up in functions makes it much easier to localize
modifications.

Taking a Closer Look
Let’s calculate the Euclidean distance between two points.

Euclidean Distance between two Points

I Given some ‘special’ point p, how close are various other
points to p?

I Useful, for example, if trying to find the closest point to p.

I Use Euclidean distance — restricted to 2D case, where
p = (p0, p1) etc.:

dist(p, q) =
√

(p0 − q0)2 + (p1 − q1)2

public static double distance(double x0 , double y0 ,

double x1, double y1) {

double d1 = x0 - x1;

double d2 = y0 - y1;

return Math.sqrt(d1*d1 + d2*d2);

}

Euclidean Distance between two Points

I Given some ‘special’ point p, how close are various other
points to p?

I Useful, for example, if trying to find the closest point to p.

I Use Euclidean distance — restricted to 2D case, where
p = (p0, p1) etc.:

dist(p, q) =
√

(p0 − q0)2 + (p1 − q1)2

public static double distance(double x0 , double y0 ,

double x1, double y1) {

double d1 = x0 - x1;

double d2 = y0 - y1;

return Math.sqrt(d1*d1 + d2*d2);

}

Anatomy of a Java Function

 public static double distance (double x0, double y0,
 double x1, double y1) {
 double d1 = (x0 - x1);
 double d2 = (y0 - y1);
 return Math.sqrt(d1*d1 + d2*d2);
 }

Anatomy of a Java Function

 public static double distance (double x0, double y0,
 double x1, double y1) {
 double d1 = (x0 - x1);
 double d2 = (y0 - y1);
 return Math.sqrt(d1*d1 + d2*d2);
 }

declaration

function
body

return
type

method
name

local variables

parameter
type parameter

return
statement

modifiers

Calling a Function

Literal arguments

double d = distance(3.0, 5.0, 14.25, 2.70);

Variable arguments

double p0 = 3.0;

double p1 = 5.0;

double q0 = 14.25;

double q1 = 2.70;

double d = distance(p0, p1, q0, q1);

Flow of Control with Functions

Schematic Structure of Program

public class PointDistance {

public static double distance(double x0, double y0,

double x1, double y1) {

...

}

public static void main(String[] args) {

...

double dist = distance(p0, p1, q0, q1);

...

}

}

Flow of Control with Functions

Functions provide a new way to control the flow of execution.

What happens when a function is called:

I Control transfers to the code in body of the function.

I Parameter variables are assigned the values given in the call.

I Function code is executed.

I Return value is assigned in place of the function call in the
calling code.

I Control transfers back to the calling code.

Pass by Value

I Pass by Value: parameter variables are assigned the values
given by arguments to the call.

I The function only has access to the values of its arguments,
not the arguments themselves.

I Consequently, changing the value of an argument in the body
of the code has no effect on the calling code.

Pass by Value

public class AddOne {

public static void addOne(int num) {

num++;

}

public static void main(String[] args) {

int x = 0;

addOne(x);

System.out.println(x);

}

}

Output

$ java AddOne

0

Pass by Value

num++

addOne(x)

int num = x

System.out.print
ln(x)

int x = 0

addOne

calling code

Pass by Value

num++

addOne(x)

int num = x

System.out.print
ln(x)

int x = 0

addOne

calling code
0

0

memory

x

num

Signature

The signature of a Java function consists of its name and its
parameter list (number and type of parameters, in order).

Example signature

max(int x, int y)

However, it’s often convenient to use the term more loosely to
refer to the head of the function definition:

Example head of definition

public static int max(int x, int y)

Signature

The signature of a Java function consists of its name and its
parameter list (number and type of parameters, in order).

Example signature

max(int x, int y)

However, it’s often convenient to use the term more loosely to
refer to the head of the function definition:

Example head of definition

public static int max(int x, int y)

Return

I Return type of a function is stated in the header of the
function declaration.

I A function declared void doesn’t return a value.

I Any function with a non-void return type rtype must contain
a statement of the form

return returnValue;

where the data type of returnValue matches the type rtype.

Return

public class AddReturn {

public static int add(int a, int b) {

int result = a + b;

return result;

}

public static void main(String[] args) {

int c = 0;

c = add(3, 2);

System.out.println(c);

}

}

Output

$ java AddReturn

5

Pass by Value

int result = a+b

return result

c = result

c = add(3,2)

int a = 3
int b = 2

next statement

int c;

add

calling code

Pass by Value: Arrays

Array types are reference types, so things work a bit differently
with arrays as arguments:

I the array itself (and its length) cannot be changed;

I but its elements can be changed.

I So changing the value of the element of an array is a
side-effect of the function.

Pass by Value: Arrays

public class AddOne {

public static void addOne(int[] anArray) {

anArray[0]++;

}

public static void main(String[] args) {

int[] a = { 0, 1 };

addOne(a);

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

}

}

}

Output

$ java AddOne

1

1

Pass by Value: Arrays - Reference Types

anArray[0]++

addOne(a)

int[] anArray = a

for ...

int[] a = {0,1}

addOne

calling code

Pass by Value: Arrays - Reference Types

anArray[0]++

addOne(a)

int[] anArray = a

for ...

int[] a = {0,1}

addOne

calling code

0

1

memory

a anArray

Cubes

Choose the correct instruction(s) to be placed in the body of the
function such that the function will return the cube of a number.

Cubes

Choose the correct instruction(s) to be placed in the body of the
function such that the function will return the cube of a number.

public static int cube (int x) {

// what goes in here?

}

1. int i = x * x * x;2. int x = x * x * x;

return x;

3. return x * x * x;4. x = x * x * x;

return x;

Cubes

Choose the correct instruction(s) to be placed in the body of the
function such that the function will return the cube of a number.

public static int cube (int x) {

return x*x*x;

}

1. int i = x * x * x;2. int x = x * x * x;

return x;

3. return x * x * x;

4. x = x * x * x;

return x;

What does this print?

public static void swap(int a, int b) {

int tmp;

tmp = a;

a = b;

b = tmp;

System.out.println(a + " " + b);

}

public static void main(String [] args) {

int a = 2;

int b = 5;

System.out.println(a + " " + b);

swap(a,b);

System.out.println(a + " " + b);

}

Output

2 5

5 2

2 5

Only copies of the
calling code’s a and b
are swapped in the
function.

What does this print?

public static void swap(int a, int b) {

int tmp;

tmp = a;

a = b;

b = tmp;

System.out.println(a + " " + b);

}

public static void main(String [] args) {

int a = 2;

int b = 5;

System.out.println(a + " " + b);

swap(a,b);

System.out.println(a + " " + b);

}

Output

2 5

5 2

2 5

Only copies of the
calling code’s a and b
are swapped in the
function.

What does this print?

public static void swap(int[] a) {

int tmp;

tmp = a[0];

a[0] = a[1];

a[1] = tmp;

System.out.println(a[0] + " " + a[1]);

}

public static void main(String [] args) {

int[] a = {2, 5};

System.out.println(a[0] + " " + a[1]);

swap(a);

System.out.println(a[0] + " " + a[1]);

}

Output

2 5

5 2

5 2

A reference to the
calling codes array is
copied and the original
data is changed.

What does this print?

public static void swap(int[] a) {

int tmp;

tmp = a[0];

a[0] = a[1];

a[1] = tmp;

System.out.println(a[0] + " " + a[1]);

}

public static void main(String [] args) {

int[] a = {2, 5};

System.out.println(a[0] + " " + a[1]);

swap(a);

System.out.println(a[0] + " " + a[1]);

}

Output

2 5

5 2

5 2

A reference to the
calling codes array is
copied and the original
data is changed.

Breaking Down Code as a
Development Strategy

Let’s find the nearest neighbour to a central point.

Find Nearest Neighbour to a Central Point

Sequence of x-y point coordinates as arguments to program

Solution

class NearestNeighbourBad {

public static void main(String [] args) {

int N = args.length;

if (N % 2 != 0) N--; // ignore final arg if odd number

double [] points = new double[N];

for(int i = 0; i < N; i++)

points[i] = Double.parseDouble(args[i]);

double [] centre = { points [0], points [1] }; // first point is our

centre

System.out.printf("Centre lies at (%5.2f, %5.2f)\n", centre [0],

centre [1]);

double [] neighbours = new double[points.length - 2];

for(int i = 2; i < points.length; i++) // all except the first are

neighbours

neighbours[i - 2] = points[i];

double [] dists = new double[neighbours.length / 2];

for(int i = 0; i < neighbours.length; i += 2) { // step over two at

a time to get x and y

double d1 = centre [0] - neighbours[i];

double d2 = centre [1] - neighbours[i + 1];

dists[i / 2] = Math.sqrt(d1*d1 + d2*d2);

}

for(int i = 0; i < dists.length; i++)

System.out.printf("Distance to (%5.2f, %5.2f) is %5.2f\n",

neighbours [(i*2)], neighbours [(i*2) + 1], dists[

i]);

double min = dists [0];

for(int i = 1; i < dists.length; i++)

if (dists[i] < min) min = dists[i];

System.out.printf("Minimum distance to centre is %5.2f\n", min);

}

}

Easy, Right?

Don’t worry. Breaking this
down into functions will make

this much easier!

Easy, Right?

Don’t worry. Breaking this
down into functions will make

this much easier!

What do we need to do?

I parse arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I parse arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I parse arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I parse arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I parse arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I parse arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I parse arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I parse arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I parse arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I parse arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I points ← parse arguments ← arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I points ← parse arguments ← arguments

I get centre

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I points ← parse arguments ← arguments

I centre ← get centre ← points

I print centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I points ← parse arguments ← arguments

I centre ← get centre ← points

I print centre ← centre

I get neighbours

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I points ← parse arguments ← arguments

I centre ← get centre ← points

I print centre ← centre

I neighbours ← get neighbours ← points

I calculate distances

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I points ← parse arguments ← arguments

I centre ← get centre ← points

I print centre ← centre

I neighbours ← get neighbours ← points

I distances ← calculate distances ← centre, neighbours

I print distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I points ← parse arguments ← arguments

I centre ← get centre ← points

I print centre ← centre

I neighbours ← get neighbours ← points

I distances ← calculate distances ← centre, neighbours

I print distances ← distances

I calculate minimum

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I points ← parse arguments ← arguments

I centre ← get centre ← points

I print centre ← centre

I neighbours ← get neighbours ← points

I distances ← calculate distances ← centre, neighbours

I print distances ← distances

I minimum ← calculate minimum ← distances

I print minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I points ← parse arguments ← arguments

I centre ← get centre ← points

I print centre ← centre

I neighbours ← get neighbours ← points

I distances ← calculate distances ← centre, neighbours

I print distances ← distances

I minimum ← calculate minimum ← distances

I print minimum ← minimum

Let’s think about what we need for those steps.

The flow of the data

What do we need to do?

I points ← parse arguments ← arguments

I centre ← get centre ← points

I print centre ← centre

I neighbours ← get neighbours ← points

I distances ← calculate distances ← centre, neighbours

I print distances ← distances

I minimum ← calculate minimum ← distances

I print minimum ← minimum

Let’s think about what we need for those steps.

The flow of the data

That is it!

Main Function for Nearest Neighbour

public static void main(String [] args) {

double [] points = parseArguments(args);

double [] centre = getCentre(points);

printCentre(centre);

double [] neighbours = getNeighbours(points);

double [] distances = calcDistances(centre ,

neighbours);

printDistances(distances , neighbours);

double minimum = calcMinimum(distances);

printMinimum(minimum);

}

This is simply what we just developed plus

some types and brackets.

Main Function for Nearest Neighbour

public static void main(String [] args) {

double [] points = parseArguments(args);

double [] centre = getCentre(points);

printCentre(centre);

double [] neighbours = getNeighbours(points);

double [] distances = calcDistances(centre ,

neighbours);

printDistances(distances , neighbours);

double minimum = calcMinimum(distances);

printMinimum(minimum);

}

This is simply what we just developed plus

some types and brackets.

All that is left to do is write some simple

functions.

Function Signatures / Headers

class NearestNeighbour {

public static double [] parseArguments(String [] args) {...}

public static double [] getCentre(double [] points) {...}

public static void printCentre(double [] centre) {...}

public static double [] getNeighbours(double [] points) {...}

public static double distance(double x0 , double y0 ,

double x1, double y1) {...}

public static double [] calcDistances(double [] centre ,

double [] neighbours) {...}

public static void printDistances(double [] dists ,

double [] neighbours) {...}

public static double calcMinimum(double [] dists) {...}

public static void printMinimum(double min) {...}

public static void main(String [] args) {

double [] points = parseArguments(args);

double [] centre = getCentre(points);

printCentre(centre);

double [] neighbours = getNeighbours(points);

double [] distances = calcDistances(centre , neighbours);

printDistances(distances , neighbours);

double minimum = calcMinimum(distances);

printMinimum(minimum);

}

}

Arguments

public static double [] parseArguments(String [] args) {

int n = args.length;

if (n % 2 != 0) n--; // ignore final arg if odd no

double [] p = new double[n];

for (int i = 0; i < n; i++) {

p[i] = Double.parseDouble(args[i]);

}

return p;

}

public static void main(String [] args) {

double [] points = parseArguments(args);

...

}

Centre

public static double [] getCentre(double [] points) {

// first point is our centre

double [] c = { points [0], points [1] };

return c;

}

public static void printCentre(double [] centre) {

System.out.printf("Centre lies at (%5.2f, %5.2f)\n",

centre [0], centre [1]);

}

public static void main(String [] args) {

...

double [] centre = getCentre(points);

printCentre(centre);

...

}

Neighbours

public static double [] getNeighbours(double []

points) {

double [] n = new double[points.length - 2];

// all except the first are neighbours

for (int i = 2; i < points.length; i++) {

n[i - 2] = points[i];

}

return n;

}

public static void main(String [] args) {

...

double [] neighbours = getNeighbours(points);

...

}

Distance Calculation

public static double distance(double x0 , double y0 ,

double x1, double y1) {

double d1 = x0 - x1;

double d2 = y0 - y1;

return Math.sqrt(d1*d1 + d2*d2);

}

public static double [] calcDistances(double [] centre , double []

neighbours) {

double [] dists = new double[neighbours.length / 2];

// step over two at a time to get x and y

for(int i = 0; i < neighbours.length; i += 2) {

dists[i / 2] = distance(centre [0], centre [1],

neighbours[i], neighbours[i + 1]);

}

return dists;

}

public static void main(String [] args) {

...

double [] distances = calcDistances(centre , neighbours);

...

}

Distance Print

public static void printDistances(double [] dists , double [] neighbours) {

for (int i = 0; i < dists.length; i++) {

System.out.printf("Distance to (%5.2f, %5.2f) is %5.2f\n",

neighbours [(i*2)],

neighbours [(i*2) + 1],

dists[i]);

}

}

public static void main(String [] args) {

...

printDistances(distances , neighbours);

...

}

Minimum

public static double calcMinimum(double [] dists) {

double min = dists [0];

for(int i = 1; i < dists.length; i++)

if (dists[i] < min) min = dists[i];

return min;

}

public static void printMinimum(double min) {

System.out.printf("Minimum distance to " +

"centre is %5.2f\n", min);

}

public static void main(String [] args) {

...

double minimum = calcMinimum(distances);

printMinimum(minimum);

}

Benefit of breaking a program into well-named functions

I decomposition of a complex task into simpler steps.

I hiding implementation details from the callers of a function

I reducing duplication of code within a program – Write Once,
write DRY code where you Don’t Repeat Yourself

I enabling reuse of code across multiple programs.

High-level motivation: readability and maintainability.
Get it right, keep it right.

Concrete advice:
Whenever you can clearly separate tasks within programs, you
should do so.
Aim for methods of no more than 10-15 lines. A function should
do only one thing and that thing well.

Summary: Using Functions / Static Methods

Java functions:

I Take zero or more input arguments.

I Return at most one output value.

I Can have side effects; e.g., send output to the terminal.

Summary: Using Functions / Static Methods

Structuring your code with methods has the following benefits:

I encourages good coding practices by emphasizing discrete,
reusable methods;

I encourages self-documenting code through good organization;

I when descriptive names are used, high-level methods can read
more like a narrative, reducing the need for comments;

I reduces code duplication.

Summary: Using Functions / Static Methods

I What about recursive functions?
I Basic concepts same as in Haskell.
I One exercise (factorial) in week four’s labsheets.

I Refactoring improves the structure of code without changing
the functionality of the application.

Reading

The order of topics in the Java Tutorial is different from the order
of these slides, so at this point there isn’t an ideal match: the
following reading anticipates some things we’ll cover later.

Java Tutorial
(Re)read pp33-37; then read pp87-99.

i.e., read the first part of Chapter 2 Object-Oriented Programming
Concepts carefully now, but stop at Inheritance; and read the first
part of Chapter 4 Classes and Objects, stopping at Objects.

