
Inf1B
Inheritance A

Fiona McNeill
adapting earlier versions by Perdita Stevens, Ewan Klein, Volker Seeker, et al.

School of Informatics



UML Class Diagrams

UML: language for specifying and visualizing OOP software
systems

UML class diagram:

I specifies class name, instance variables, methods, . . .

+takeExam()
+graduate()
+party()

-matricNo
-name
-age
-mailBox

UGStudent
instance 
variables

instance 
methods

class name

- = private
+ = public



Classes with Stuff in Common

+takeExam()
+graduate()
+party()

-matricNo
-name
-age
-mailBox

UGStudent PGStudent

+takeExam()
+graduate()
+party()
+tutor()

-matricNo
-name
-age
-mailBox

I Lots of duplication across the two classes

I More importantly, many clients should be able to work with
both: don’t want to duplicate their code.

I How do we eliminate the duplication?



Classes with Stuff in Common

+takeExam()
+graduate()
+party()

-matricNo
-name
-age
-mailBox

UGStudent PGStudent

+takeExam()
+graduate()
+party()
+tutor()

-matricNo
-name
-age
-mailBox

I Lots of duplication across the two classes

I More importantly, many clients should be able to work with
both: don’t want to duplicate their code.

I How do we eliminate the duplication?



Abstracting Common Stuff

Inheritance hierarchy:
Subclass (UG, PG) inherit from superclass (Student)

UGStudent PGStudent
+tutor()

+takeExam()
+graduate()
+party()

-matricNo
-name
-age
-mailBox

Student

Arrow with open head indicates generalization in UML class diagram.



Subclasses and superclasses

I Subclass (e.g. UG) inherits∗ the members of superclass (e.g.
Student)

I Subclass is a specialization of superclass — superclass is
generalization of subclass

∗[details to be further specified...]



X IS-A Y?

The IS-A test

I Is ClassX a subclass of ClassY?

I Test: can we say that ClassX IS-A (‘is a kind of’) ClassY?

I Does an instance of ClassX have all the properties (and
maybe more) that an instance of ClassY has?

IS-A Candidates

1. Kitchen subclass-of Room

2. Room subclass-of House

3. Violinist subclass-of Musician

4. Sink subclass-of Kitchen

5. Musician subclass-of Person

6. Lady Gaga subclass-of Singer

7. Student subclass-of Musician



Inheritance

Subclass inherits all the members (instance
variables and methods) of the superclass.

In Java: subclass extends superclass.

public class PGStudent extends Student {

...

}



Inheritance

Subclass inherits all the public and protected
members (instance variables and methods) of the
superclass.

In Java: subclass extends superclass.

public class PGStudent extends Student {

...

}



The protected Access Modifier

public class Student {

...

private String name;

...

}

public class PGStudent extends Student {

public void tutor() {

System.out.println("Hello, I am " + name);

...

}

}

This will cause a compiler error because name is not visible in
the PGStudent subclass.



The protected Access Modifier

public class Student {

...

protected String name;

...

}

public class PGStudent extends Student {

public void tutor() {

System.out.println("Hello, I am " + name);

...

}

}

Now name is visible to all subclasses of Student and the code
will compile.



Access Modifiers Summary

Modifier Class Package Subclass Global
Public Yes Yes Yes Yes

Protected Yes Yes Yes No

Default Yes Yes No No

Private Yes No No No



Inheritance

Subclass inherits all the public and protected
members (instance variables and methods) of the
superclass.

A subclass can add new members of its own.

By default, methods that are inherited from
superclass have same implementation in subclass.

Except if the subclass overrides the inherited
method.



Inheritance

Subclass inherits all the public and protected
members (instance variables and methods) of the
superclass.

A subclass can add new members of its own.

By default, methods that are inherited from
superclass have same implementation in subclass.

Except if the subclass overrides the inherited
method.



Inheritance

Subclass inherits all the public and protected
members (instance variables and methods) of the
superclass.

A subclass can add new members of its own.

By default, methods that are inherited from
superclass have same implementation in subclass.

Except if the subclass overrides the inherited
method.



Inheritance

Subclass inherits all the public and protected
members (instance variables and methods) of the
superclass.

A subclass can add new members of its own.

By default, methods that are inherited from
superclass have same implementation in subclass.

Except if the subclass overrides the inherited
method.



Doctor Example, 1

+treatPatient(): void
+makeIncisions(): void

Surgeon

+giveAdvice(): void

FamilyDoctor

+treatPatient(): void

Doctor

generalization

overriding method

For handy guide to UML, see
http://www.loufranco.com/blog/assets/cheatsheet.pdf

http://www.loufranco.com/blog/assets/cheatsheet.pdf


Doctor Example, 2

Doctor

public class Doctor {

public void treatPatient() {

// perform a checkup

}

}



Doctor Example, 3

FamilyDoctor

public class FamilyDoctor extends Doctor {

public void giveAdvice() {

// tells you to wrap up warmly

}

}

NB We put this class into a new file FamilyDoctor.java



Doctor Example, 4

Surgeon

public class Surgeon extends Doctor {

public void treatPatient() {

// perform surgery

// overrides inherited method

// Can call Doctor’s version:

super.treatPatient();

}

public void makeIncisions() {

// use a scalpel

// a new method

}

}

NB We put this class into a new file Surgeon.java



Method Overriding

I Method m in subclass B overrides method m’ in superclass A

if m has exactly the same signature (i.e. name and
parameters) as m’. (Return type? Later...)

I Normally, m replaces the implementation of m’.

Doctor

Doctor d = new Doctor();

d.treatPatient(); // Use implementation in Doctor class

Surgeon

Surgeon s = new Surgeon();

s.treatPatient(); // Use implementation in Surgeon class



What does it print?

public class Vehicle {

public void drive() {

System.out.println("drivedrive");

}

}

public class Car extends Vehicle { }

public class Bike extends Vehicle { }

public class Main {

public static void main(String [] args) {

Car c = new Car();

c.drive();

Bike b = new Bike();

b.drive();

}

}

Prints drivedrive twice because Bike and Car inherit drive
implementation from Vehicle.



What does it print?

public class Vehicle {

public void drive() {

System.out.println("drivedrive");

}

}

public class Car extends Vehicle { }

public class Bike extends Vehicle { }

public class Main {

public static void main(String [] args) {

Car c = new Car();

c.drive();

Bike b = new Bike();

b.drive();

}

}

Prints drivedrive twice because Bike and Car inherit drive
implementation from Vehicle.



If it compiles, what does it print?

public class Vehicle {

public void drive() {

System.out.println("drivedrive");

}

}

public class Car extends Vehicle {

public void drive() {

System.out.println("rollroll");

}

}

public class Bike extends Vehicle {

public void drive() {

System.out.println("pedalpedal");

}

}

public class Main {

public static void main(String [] args) {

Car c = new Car(); c.drive();

Bike b = new Bike(); b.drive();

}

}

Prints rollroll and pedalpedal because Bike and Car override
Vehicle’s drive implementation with their own.



If it compiles, what does it print?

public class Vehicle {

public void drive() {

System.out.println("drivedrive");

}

}

public class Car extends Vehicle {

public void drive() {

System.out.println("rollroll");

}

}

public class Bike extends Vehicle {

public void drive() {

System.out.println("pedalpedal");

}

}

public class Main {

public static void main(String [] args) {

Car c = new Car(); c.drive();

Bike b = new Bike(); b.drive();

}

}

Prints rollroll and pedalpedal because Bike and Car override
Vehicle’s drive implementation with their own.



If it compiles, what does it print?

public class Vehicle {

public void drive() {

System.out.println("drivedrive");

}

}

public class Car extends Vehicle {

public void drive() {

super.drive ();

}

}

public class Bike extends Vehicle {

public void drive() {

System.out.println("pedalpedal");

}

}

public class Main {

public static void main(String [] args) {

Car c = new Car(); c.drive();

Bike b = new Bike(); b.drive();

}

}

Prints drivedrive and pedalpedal because Car’s drive method
calls the super class’s drive method.



If it compiles, what does it print?

public class Vehicle {

public void drive() {

System.out.println("drivedrive");

}

}

public class Car extends Vehicle {

public void drive() {

super.drive ();

}

}

public class Bike extends Vehicle {

public void drive() {

System.out.println("pedalpedal");

}

}

public class Main {

public static void main(String [] args) {

Car c = new Car(); c.drive();

Bike b = new Bike(); b.drive();

}

}

Prints drivedrive and pedalpedal because Car’s drive method
calls the super class’s drive method.



The Design Process

1. Look for objects that have common attributes and behaviours.

2. Design a class that represents the common state and
behaviour.

3. Decide if a subclass needs method implementations that are
specific to that particular subclass type.

4. Carry out further abstraction by looking for groups of
subclasses that might have common behaviours.



Encapsulation and Inheritance

Student

public class Student {

private final String firstName;

private final String lastName;

private final String matric;

public Student(String fn, String ln, String m) { ... }

public String getFirstName() { ... }

public String getLastName() { ... }

public String getMatric() { ... }

}



Encapsulation and Inheritance

UG

public class UG extends Student {

private String tutGroup = "";

public void setTutGroup(String s) {

tutGroup = s;

}

public String getTutGroup() {

return tutGroup;

}

public String toString() {

return "UG [firstName=" + firstName + ",

lastName=" + lastName +

", matric=" + matric +

", tutGroup=" + tutGroup + "]";

}

}



Encapsulation and Inheritance

UG

public class UG extends Student {

private String tutGroup = "";

...

public String toString() {

return "UG [firstName=" + firstName + ",

lastName=" + lastName +

", matric=" + matric +

", tutGroup=" + tutGroup + "]";

}

}

Won’t work!



Encapsulation and Inheritance

UG

public class UG extends Student {

private String tutGroup = "";

...

public String toString()

return "UG [firstName=" + getFirstName() + ", " +

" lastName=" + getLastName() +

", matric=" + getMatric() +

", tutGroup=" + tutGroup + "]";

}

}



Encapsulation and Inheritance

Student

public class Student {

protected final String firstName;

protected final String lastName;

protected final String matric;

public Student(String fn, String ln, String m) { ... }

public String getFirstName() { ... }

public String getLastName() { ... }

public String getMatric() { ... }

}



Encapsulation and Inheritance

I private instance variables (fields) cannot be directly accessed
by subclass.

I Can only be accessed via setter and getter methods (which
are inherited from superclass).

I protected instance variables are still hidden from other classes
but accessible by subclasses.
→ However, you might not want to allow this for users of
your library.



The Object Superclass



FamilyDoctor Members

Inherited and non-inherited members

This can also be seen in the Java API
https://docs.oracle.com/en/java/javase/11/docs/api/

index.html

https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html


The class Object

Doctor’s Superclass

public class Doctor {

extends Object {

void treatPatient() {

...

}

}

I Object is the superclass of every class in Java!

I If a class doesn’t explicitly extend some superclass, then it
implicitly extends Object.

I That is, we don’t need to add extends Object.



The class Object

Doctor’s Superclass

public class Doctor extends Object {

void treatPatient() {

...

}

}

I Object is the superclass of every class in Java!

I If a class doesn’t explicitly extend some superclass, then it
implicitly extends Object.

I That is, we don’t need to add extends Object.



Some Methods of Object

Object defines methods that are available to every class. E.g.,

I equals(Object o) — test whether two objects are equal.

I hashCode() — numerical ID; equal objects must have equal
hash codes.

I toString() — returns a textual representation of an object;
automatically invoked by methods like
System.out.println().

I Since every class inherits toString() from Object, you have
already been overriding this method!



Objects ...

I have a static (compile-time) type defined inside a class

I are instances of classes created at runtime

I are created using a constructor and the new keyword

I are reference types

I reside on the heap memory rather than the stack

I are destroyed automatically by the garbage collector

I derive from the Object superclass

I inherit some default methods (e.g. toString, equals,
hashCode, ...)



Constructor Chaining



Constructor Chaining

I All constructors in object’s inheritance tree run when a new
instance is created.

I FamilyDoctor extends Doctor

Object

FamilyDoctor

Doctor



Constructor Chaining

I Each constructor, implicitly or explicitly, invokes a constructor
of the direct superclass as the first thing it does...

I ...so that by the time it does anything else, all aspects of the
object defined in any superclass have been properly defined.

I Only Object has no direct superclass, so that’s where the
process stops.

I Syntax for explicitly invoking a constructor: super(arg1,

arg2, ...).

I You can omit this call if what you want is a no-argument
constructor: the compiler automatically inserts super().

I But if there is no no-argument constructor, you’ll get a
compile-time error.

I The constructor call must always be the first instruction in the
constructor’s body.



Constructor Chaining

Student

public Student(String fn, String ln, String m) {

firstName = fn;

lastName = ln;

matric = m;

}

UG extends Student

private String tutGroup

public UG(String fn, String ln, String m, String tutGroup) {

super(fn, ln, m); // call the superclass constructor

this.tutGroup = tutGroup;

}



What does it print?

public class Vehicle {

protected String noise;

public Vehicle () {

noise = "drive";

}

public void drive() {

System.out.println(noise + noise);

}

}

public class Car extends Vehicle {

public Car() {

noise = "roll";

}

}

public class Main {

public static void main(String [] args)

{

Car c = new Car();

c.drive();

}

}

Prints rollroll because
”roll” is assigned after
”drive” in constructor
chain.



What does it print?

public class Vehicle {

protected String noise;

public Vehicle () {

noise = "drive";

}

public void drive() {

System.out.println(noise + noise);

}

}

public class Car extends Vehicle {

public Car() {

noise = "roll";

}

}

public class Main {

public static void main(String [] args)

{

Car c = new Car();

c.drive();

}

}

Prints rollroll because
”roll” is assigned after
”drive” in constructor
chain.



What does it print?

public class Vehicle {

private String noise;

public Vehicle () {

noise = "drive";

}

public void drive() {

System.out.println(noise + noise);

}

}

public class Car extends Vehicle { }

public class Main {

public static void main(String [] args

) {

Car c = new Car();

c.drive();

}

}

Prints drivedrive
because default no-arg
ctor is provided for Car
by default which
automatically calls
no-arg ctor from
Vehicle. drive

method is inherited.



What does it print?

public class Vehicle {

private String noise;

public Vehicle () {

noise = "drive";

}

public void drive() {

System.out.println(noise + noise);

}

}

public class Car extends Vehicle { }

public class Main {

public static void main(String [] args

) {

Car c = new Car();

c.drive();

}

}

Prints drivedrive
because default no-arg
ctor is provided for Car
by default which
automatically calls
no-arg ctor from
Vehicle. drive

method is inherited.



What does it print?

public class Vehicle {

private String noise;

public Vehicle () {

noise = "drive";

}

public void drive() {

System.out.println(noise + noise);

}

}

public class Car extends Vehicle {

public void drive() {

System.out.println(noise);

}

}

public class Main {

public static void main(String [] args

) {

Car c = new Car();

c.drive();

}

}

Does not compile
because access to
noise is private and
therefore not allowed in
Car. - protected
would have worked.



What does it print?

public class Vehicle {

private String noise;

public Vehicle () {

noise = "drive";

}

public void drive() {

System.out.println(noise + noise);

}

}

public class Car extends Vehicle {

public void drive() {

System.out.println(noise);

}

}

public class Main {

public static void main(String [] args

) {

Car c = new Car();

c.drive();

}

}

Does not compile
because access to
noise is private and
therefore not allowed in
Car. - protected
would have worked.



What does it print?

public class Vehicle {

protected String noise;

public Vehicle(String noise) {

this.noise = noise;

}

public void drive() {

System.out.println(noise + noise);

}

}

public class Car extends Vehicle {

public void drive() {

System.out.println(noise);

}

}

public class Main {

public static void main(String [] args

) {

Car c = new Car("roll");

c.drive();

}

}

Does not compile
because Vehicle’s one
argument ctor needs to
be called explictly using
super in Car’s ctor.

Constructors are not
inherited!



What does it print?

public class Vehicle {

protected String noise;

public Vehicle(String noise) {

this.noise = noise;

}

public void drive() {

System.out.println(noise + noise);

}

}

public class Car extends Vehicle {

public void drive() {

System.out.println(noise);

}

}

public class Main {

public static void main(String [] args

) {

Car c = new Car("roll");

c.drive();

}

}

Does not compile
because Vehicle’s one
argument ctor needs to
be called explictly using
super in Car’s ctor.

Constructors are not
inherited!



What does it print?

public class Vehicle {

protected String noise;

public Vehicle(String noise) {

this.noise = noise;

}

public void drive() {

System.out.println(noise + noise);

}

}

public class Car extends Vehicle {

public Car(String noise) {

super(noise);

}

public void drive() {

System.out.println(noise);

}

}

public class Main {

public static void main(String [] args

) {

Car c = new Car("roll");

c.drive();

}

}

This works and prints
roll.



What does it print?

public class Vehicle {

protected String noise;

public Vehicle(String noise) {

this.noise = noise;

}

public void drive() {

System.out.println(noise + noise);

}

}

public class Car extends Vehicle {

public Car(String noise) {

super(noise);

}

public void drive() {

System.out.println(noise);

}

}

public class Main {

public static void main(String [] args

) {

Car c = new Car("roll");

c.drive();

}

}

This works and prints
roll.



Summary

Inheriting from a superclass:
I the subclass gets all the public and protected members

(instance variables and methods) of the superclass;
I public class UGStudent extends Student

I the subclass may add members, and also override methods.

I So subclass extends (adds to) the behaviour of its superclass.

I Inheritance corresponds roughly to taxonomic relations for
everyday concepts.

I In Java, you can only inherit from one superclass.

Problems with using inheritance:

I Easy to get muddled with inheritance hierarchies.

I Subclass is tightly coupled with superclass.

I Changes in superclass can break subclass — fragile base class
problem.



Reading

Objects First

Chapter 10 Improving Structure with Inheritance

Stop at 10.7 Subtyping for now ...


