
Inf1B
Abstract Classes and Interfaces

Fiona McNeill
adapting earlier versions by Perdita Stevens, Ewan Klein, Volker Seeker, et al.

School of Informatics

Abstract Classes

Greeting

I The function makeGreeting gets a greeting string from an
object greeter of class Hello.

I Then sends a greeting to a friend.

Talker

public static void makeGreeting(Hello greeter, String name) {

System.out.printf(greeter.sayHello() + ", " + name + "!");

}

public static void main(String[] args) {

Hello greeter = new Hello();

makeGreeting(greeter, "James");

}

Greeting

Hello class is trivial:

Hello

public class Hello {

public String sayHello() {

return "Hello";

}

}

Output

Hello, James!

Extending Greeting

I Suppose we decide to go international, and add a new class
Bonjour.

I Similar to Hello, but different method name and different
return string.

Bonjour

public class Bonjour {

public String ditBonjour() {

return "Bonjour";

}

}

Possible Solution?

I Hello and Bonjour should both be usable by makeGreeting

I But we can’t do this straightforwardly; so create overload with
a new ‘French’ version?

Talker

public static void makeGreeting(Hello greeter, String name) {

System.out.printf(greeter.sayHello() + ", " + name + "!");

}

public static void main(String[] args) {

Hello engGreeter = new Hello();

makeGreeting(engGreeter, "James");

Bonjour frGreeter = new Bonjour();

makeGreeting(frGreeter, "Jacques");

}

Possible Solution?
I Hello and Bonjour should both be usable by makeGreeting

I But we can’t do this straightforwardly; so create overload with
a new ‘French’ version?

Talker

public static void makeGreeting(Hello greeter, String name) {

System.out.printf(greeter.sayHello() + ", " + name + "!");

}

public static void makeGreeting(Bonjour greeter, String name) {

System.out.printf(greeter. ditBonjour() + ", " + name + "!");

}

public static void main(String[] args) {

Hello engGreeter = new Hello();

makeGreeting(engGreeter, "James");

Bonjour frGreeter = new Bonjour();

makeGreeting(frGreeter, "Jacques");

}

Greeting

I Overloading makeGreeting to use Bonjour is wasteful —
we’re duplicating code.

I Can we get a more general version of makeGreeting which
can use both Hello and Bonjour?

Step 1: Give both these classes a common API; i.e., they should
use the same methods.

Greeting

I Overloading makeGreeting to use Bonjour is wasteful —
we’re duplicating code.

I Can we get a more general version of makeGreeting which
can use both Hello and Bonjour?

Step 1: Give both these classes a common API; i.e., they should
use the same methods.

Greeting

Hello

public class Hello {

public String greet() {

return "Hello";

}

}

Bonjour

public class Bonjour {

public String greet() {

return "Bonjour";

}

}

Greeting

I How do we say, in general, what the shared API is?

I For example, how to enforce that a new class BuonGiorno

conforms to this API?

Step 2: Pull the API into a superclass Greeting.

public class Hello extends Greeting {

public String greet() {

return "Hello";

}

}

public class Bonjour extends Greeting {

public String greet() {

return "Bonjour";

}

}

Greeting

I How do we say, in general, what the shared API is?

I For example, how to enforce that a new class BuonGiorno

conforms to this API?

Step 2: Pull the API into a superclass Greeting.

public class Hello extends Greeting {

public String greet() {

return "Hello";

}

}

public class Bonjour extends Greeting {

public String greet() {

return "Bonjour";

}

}

Greeter

I How do we refactor makeGreeting to use objects that
implement Greeting?

Step 3: Use Greeting as polymorphic type in the function
signature.

Talker

public static void makeGreeting(Greeting greeter, String name) {

System.out.printf(greeter.greet() + ", " + name + "!");

}

public static void main(String[] args) {

Hello engGreeter = new Hello();

makeGreeting(engGreeter, "James")

Bonjour frGreeter = new Bonjour();

makeGreeting(frGreeter, "Jacques");

}

Greeter

I How do we refactor makeGreeting to use objects that
implement Greeting?

Step 3: Use Greeting as polymorphic type in the function
signature.

Talker

public static void makeGreeting(Greeting greeter, String name) {

System.out.printf(greeter.greet() + ", " + name + "!");

}

public static void main(String[] args) {

Hello engGreeter = new Hello();

makeGreeting(engGreeter, "James")

Bonjour frGreeter = new Bonjour();

makeGreeting(frGreeter, "Jacques");

}

Greeting

But wait, something is not well defined. What happens in this
case?

Talker

public static void makeGreeting(Greeting greeter, String name) {

System.out.printf(greeter.greet() + ", " + name + "!");

}

public static void main(String[] args) {

Greeting greeter = new Greeting();

makeGreeting(greeter, "James")

}

What does it print?

Greeting

But wait, something is not well defined. What happens in this
case?

Talker

public static void makeGreeting(Greeting greeter, String name) {

System.out.printf(greeter.greet() + ", " + name + "!");

}

public static void main(String[] args) {

Greeting greeter = new Greeting();

makeGreeting(greeter, "James")

}

What does it print?

Greeting

But wait, something is not well defined. What happens in this
case?

Talker

public static void makeGreeting(Greeting greeter, String name) {

System.out.printf(greeter.greet() + ", " + name + "!");

}

public static void main(String[] args) {

Greeting greeter = new Greeting();

makeGreeting(greeter, "James")

}

What does it print?

Greeting

I Print output for general superclass Greeting is not sensible
to have.

Greeting

public class Greeting {

public String greet() {

return ???;

}

}

Greeting

I Print output for general superclass Greeting is not sensible
to have.

I Therefore, we declare Greeting to be abstract

Greeting

public abstract class Greeting {

public String greet() {

return ???;

}

}

Greeting

I Print output for general superclass Greeting is not sensible
to have.

I Therefore, we declare Greeting to be abstract

I and provide no superclass implementation for greet.

Greeting

public abstract class Greeting {

public abstract String greet() ;

}

Greeting

I Print output for general superclass Greeting is not sensible
to have.

I Therefore, we declare Greeting to be abstract

I and provide no superclass implementation for greet.

Greeting

public abstract class Greeting {

public abstract String greet() ;

}

This solves our class design problem.

Greeting

I Instantiation of an abstract class is not allowed.

Talker

public static void makeGreeting(Greeting greeter, String name) {

System.out.printf(greeter.greet() + ", " + name + "!");

}

public static void main(String[] args) {

Greeting greeter = new Greeting();

makeGreeting(greeter, "James")

}

This causes a compiler error:

error: Greeting is abstract; cannot be instantiated

Greeting

I Instantiation of an abstract class is not allowed.

Talker

public static void makeGreeting(Greeting greeter, String name) {

System.out.printf(greeter.greet() + ", " + name + "!");

}

public static void main(String[] args) {

Greeting greeter = new Greeting();

makeGreeting(greeter, "James")

}

This causes a compiler error:

error: Greeting is abstract; cannot be instantiated

Greeting

I Instantiation of an abstract class is not allowed.

I The abstract method greet enforces required API for each
subclass.

public class Hello extends Greeting {

// must override abstract method

// to avoid compiler error

public String greet() {

return "Hello";

}

}

Greeting

I Instantiation of an abstract class is not allowed.

I The abstract method greet enforces required API for each
subclass.

public class Hello extends Greeting {

// must override abstract method

// to avoid compiler error

public String greet() {

return "Hello";

}

}

Animal Objects?

Creating new objects

Wolf wolfie = new Wolf();

Animal leo = new Lion();

Animal weird = new Animal();

I Animal class is meant to contain information that all animals
have in common.

I But this is not enough to define any one specific animal.

Concrete vs. Abstract

Concrete

I Examples: Cat, Wolf,
Hello

I Specific enough to be
instantiated.

Abstract

I Examples: Animal,
Feline, Greeting

I Not intended to have
instances.

I Only useful if extended.

I Any ’instances’ will have
to be instances of a
subclass of the abstract
class.

The Abstract Animal

Animal

public abstract class Animal {

public void sleep() {

System.out.println("Sleeping: Zzzzz");

}

public void makeNoise() {

System.out.println("Noises...");

}

public void roam() {

System.out.println("Roamin’ on the plain.");

}

}

Just put the keyword abstract before the class declaration.

The Abstract Animal

I An abstract class can be extended by other abstract classes.

I Canine and Feline can (and should) both be abstract.

Animal

public abstract class Animal {

public void sleep() {

System.out.println("Sleeping: Zzzzz");

}

public void makeNoise() {

System.out.println("Noises...");

}

public void roam() {

System.out.println("Roamin’ on the plain.");

}

}

Just put the keyword abstract before the class declaration.

The Abstract Animal

Animal

public abstract class Animal {

public void sleep() {

System.out.println(""Sleeping: Zzzzz"");

}

public abstract void roam();

public abstract void makeNoise();

}

Now has abstract methods!

The Abstract Animal

I roam() and makeNoise() are abstract methods:
I no body;
I must be implemented in any concrete subclass (implemented

∼ overridden);
I don’t have to be implemented by an abstract subclass;
I can only be declared in an abstract class;

I sleep() is not abstract, so can be straightforwardly inherited.

Abstract Classes in Animal Hierarchy

sleep()
makeNoise()
roam()

<<Abstract>>

Animal

makeNoise()

Lion
makeNoise()

Cat

makeNoise()

Wolf

makeNoise()

Dog

roam()

<<Abstract>>

Feline

roam()

<<Abstract>>

Canine

Using Abstract Classes

I Use an abstract class when you have several similar classes
that:
I have a lot in common — the implemented parts of the

abstract class
I have some differences — the abstract methods.

What does it print?

public abstract class Vehicle {

public void drive() {

System.out.println("drivedrive");

}

}

public class Car extends Vehicle {

public void drive() {

System.out.println("rollroll");

}

}

public class Main {

public static void main(String [] args) {

Vehicle c = new Vehicle ();

c.drive();

}

}

Does not compile
because abstract
classes cannot be
instantiated.

What does it print?

public abstract class Vehicle {

public void drive() {

System.out.println("drivedrive");

}

}

public class Car extends Vehicle {

public void drive() {

System.out.println("rollroll");

}

}

public class Main {

public static void main(String [] args) {

Vehicle c = new Vehicle ();

c.drive();

}

}

Does not compile
because abstract
classes cannot be
instantiated.

What does it print?

public abstract class Vehicle {

public abstract void drive();

}

public class Car extends Vehicle {

}

public class Main {

public static void main(String []

args) {

Car c = new Car();

c.drive();

}

}

Does not compile
because abstract
methods need to be
implemented in
subclass.

What does it print?

public abstract class Vehicle {

public abstract void drive();

}

public class Car extends Vehicle {

}

public class Main {

public static void main(String []

args) {

Car c = new Car();

c.drive();

}

}

Does not compile
because abstract
methods need to be
implemented in
subclass.

What does it print?

public abstract class Vehicle {

public abstract void drive();

}

public abstract class Car extends Vehicle {

public void drive() {

System.out.println("rollroll");

}

}

public class Polo extends Car {

}

public class Main {

public static void main(String [] args) {

Polo p = new Polo();

p.drive();

}

}

Prints rollroll. Car
implements the
abstract method and
Polo inherits this
implementation.

What does it print?

public abstract class Vehicle {

public abstract void drive();

}

public abstract class Car extends Vehicle {

public void drive() {

System.out.println("rollroll");

}

}

public class Polo extends Car {

}

public class Main {

public static void main(String [] args) {

Polo p = new Polo();

p.drive();

}

}

Prints rollroll. Car
implements the
abstract method and
Polo inherits this
implementation.

Interfaces

Different Types of Cars

PetrolCar
+refillTank()

ElectricCar
+rechargeBattery()

VWPolo TeslaS

Hybrid Car

PetrolCar
+refillTank()

ElectricCar
+rechargeBattery()

VWPolo TeslaS ChevroletVolt

?

How to handle a plug-in Hybrid which has both battery and petrol,
i.e. features of both superclasses?

Hybrid Car

PetrolCar
+refillTank()

ElectricCar
+rechargeBattery()

VWPolo TeslaS ChevroletVolt

HybridCar
+rechargeBattery()

+refillTank()

Creating a new superclass with both methods would be wasteful -
code duplication.

Multiple Inheritance

PetrolCar
+refillTank()

ElectricCar
+rechargeBattery()

ChevroletVolt

Inheriting from both classes would be best.

Unfortunately, multiple inheritance has some ambiguity problems.

Multiple Inheritance

PetrolCar
+refillTank()

ElectricCar
+rechargeBattery()

ChevroletVolt

Inheriting from both classes would be best.

Unfortunately, multiple inheritance has some ambiguity problems.

Ambiguity Problems with Multiple Inheritance

The Deadly Diamond of Death

PetrolCar
+refillTank()

ElectricCar
+rechargeBattery()

ChevroletVolt

Car
+startEngine()

<<abstract>>

+startEngine() +startEngine()

I both PetrolCar and ElectricCar override startEngine

I which version of startEngine does ChevroletVolt inherit?

Multiple Inheritance Support

Some languages resolve ambiguity using a complex
implementation, e.g. C++

Java, avoids ambiguity by using Interfaces

Multiple Inheritance Support

Some languages resolve ambiguity using a complex
implementation, e.g. C++

Java, avoids ambiguity by using Interfaces

Interfaces in Java

I Interfaces are defined using the interface keyword

I like abstract classes they cannot be instantiated

I unlike abstract classes all methods have to be abstract

public interface PetrolCar {

public abstract void refillTank();

}

public interface ElectricCar {

public abstract void rechargeBattery();

}

They do not allow sharing of implementations but enforce an API.

Interfaces in Java

I Interfaces are defined using the interface keyword

I like abstract classes they cannot be instantiated

I unlike abstract classes all methods have to be abstract

public interface PetrolCar {

public abstract void refillTank();

}

public interface ElectricCar {

public abstract void rechargeBattery();

}

They do not allow sharing of implementations but enforce an API.

Interfaces in Java

I classes can implement interfaces by using the implements
keyword

I an implementation for each method is enforced by the
compiler

public class ChevroletVolt implements PetrolCar, ElectricCar {

public void refillTank() {

// refill petrol

}

public void rechargeBattery() {

// recharge power

}

}

Both extension and implementation is possible:

public class ChevroletVolt extends Chevrolet implements PetrolCar, ElectricCar {

Interfaces in Java

I classes can implement interfaces by using the implements
keyword

I an implementation for each method is enforced by the
compiler

public class ChevroletVolt implements PetrolCar, ElectricCar {

public void refillTank() {

// refill petrol

}

public void rechargeBattery() {

// recharge power

}

}

Both extension and implementation is possible:

public class ChevroletVolt extends Chevrolet implements PetrolCar, ElectricCar {

Syntactic Sugar

I all methods in an interface must be public

public interface PetrolCar {

public abstract void refillTank();

}

Syntactic Sugar

I all methods in an interface must be public

public interface PetrolCar {

abstract void refillTank();

}

Syntactic Sugar

I all methods in an interface must be public

I all methods in an interface must be abstract

public interface PetrolCar {

abstract void refillTank();

}

Syntactic Sugar

I all methods in an interface must be public

I all methods in an interface must be abstract

public interface PetrolCar {

void refillTank();

}

Syntactic Sugar

I all methods in an interface must be public

I all methods in an interface must be abstract

I no constructors are allowed

public interface PetrolCar {

void refillTank();

}

Syntactic Sugar

I all methods in an interface must be public

I all methods in an interface must be abstract

I no constructors are allowed

I members are allowed but they must be public static final

public interface PetrolCar {

public static final String FUEL = "Diesel";

void refillTank();

}

Syntactic Sugar

I all methods in an interface must be public

I all methods in an interface must be abstract

I no constructors are allowed

I members are allowed but they must be public static final

public interface PetrolCar {

String FUEL = "Diesel";

void refillTank();

}

Avoiding Code Duplication

When using interfaces for PetrolCar and ElectricCar we would
have to implement refillTank and rechargeBattery for each
new superclass.

To avoid this in Java, you could use object Composition.

public class ChevroletVolt implements PetrolCar, ElectricCar {

private final BatteryCharger charger;

private final FuelPump pump;

public void refillTank() {

pump.refill();

}

public void rechargeBattery() {

charger.charge();

}

}

Avoiding Code Duplication

When using interfaces for PetrolCar and ElectricCar we would
have to implement refillTank and rechargeBattery for each
new superclass.

To avoid this in Java, you could use object Composition.

public class ChevroletVolt implements PetrolCar, ElectricCar {

private final BatteryCharger charger;

private final FuelPump pump;

public void refillTank() {

pump.refill();

}

public void rechargeBattery() {

charger.charge();

}

}

Avoiding Code Duplication

When using interfaces for PetrolCar and ElectricCar we would
have to implement refillTank and rechargeBattery for each
new superclass.

To avoid this in Java, you could use object Composition.

public class ChevroletVolt implements PetrolCar, ElectricCar {

private final BatteryCharger charger;

private final FuelPump pump;

public void refillTank() {

pump.refill();

}

public void rechargeBattery() {

charger.charge();

}

}

Inheritance in Java API

Inheritance using interfaces and abstract classes is
used a lot in the Java API.

Have a browse:

https:

//docs.oracle.com/en/java/javase/15/docs/api/

https://docs.oracle.com/en/java/javase/15/docs/api/
https://docs.oracle.com/en/java/javase/15/docs/api/

Comparable Interface

You have an ArrayList of cows and you want to order them by
size.

public class Cow extends Animal {

private int size;

private float milkYield;

private String name;

...

}

Comparable Interface

Java provides a convenient method Collections.sort() in
java.util.Collections.

ArrayList<Cow> herd = collectCows();

Collections.sort(herd); // sorts the herd

How does the sort method know that you want to order by
size and not by milkYield or name?

Comparable Interface

Java provides a convenient method Collections.sort() in
java.util.Collections.

ArrayList<Cow> herd = collectCows();

Collections.sort(herd); // sorts the herd

How does the sort method know that you want to order by
size and not by milkYield or name?

Comparable Interface

The sort method expects objects to implement the
java.lang.Comparable interface.

The Comparable interface forces subclasses to implement the
compareTo method.

public class Cow extends Animal implements Comparable<Cow>{

private int size;

private float milkYield;

private String name;

@Override

public int compareTo(Cow other) {

...

}

...

}

Comparable Interface

The sort method expects objects to implement the
java.lang.Comparable interface.

The Comparable interface forces subclasses to implement the
compareTo method.

public class Cow extends Animal implements Comparable<Cow>{

private int size;

private float milkYield;

private String name;

@Override

public int compareTo(Cow other) {

...

}

...

}

compareTo Method

compareTo is expected to be used in the following way:

I if this is less than other, return a negative number

I if this is greater than other, return a positive number

I if this is equal to other, return zero

public class Cow extends Animal implements Comparable<Cow>{

private int size;

private float milkYield;

private String name;

@Override

public int compareTo(Cow other) {

if (size < other.size) return -1;

else if (size > other.size) return 1;

else return 0;

}

...

}

compareTo Method

compareTo is expected to be used in the following way:

I if this is less than other, return a negative number

I if this is greater than other, return a positive number

I if this is equal to other, return zero

public class Cow extends Animal implements Comparable<Cow>{

private int size;

private float milkYield;

private String name;

@Override

public int compareTo(Cow other) {

if (size < other.size) return -1;

else if (size > other.size) return 1;

else return 0;

}

...

}

compareTo Method
compareTo is expected to be used in the following way:

I if this is less than other, return a negative number

I if this is greater than other, return a positive number

I if this is equal to other, return zero

public class Cow extends Animal implements Comparable<Cow>{

private int size;

private float milkYield;

private String name;

@Override

public int compareTo(Cow other) {

return size - other.size;

}

...

}

This works but is bad style!

Integer overflow possible

compareTo Method
compareTo is expected to be used in the following way:

I if this is less than other, return a negative number

I if this is greater than other, return a positive number

I if this is equal to other, return zero

public class Cow extends Animal implements Comparable<Cow>{

private int size;

private float milkYield;

private String name;

@Override

public int compareTo(Cow other) {

return size - other.size;

}

...

}

This works but is bad style!

Integer overflow possible

CompareTo Method

CompareTo is expected to be used in the following way:

I if this is less than other, return a negative number

I if this is greater than other, return a positive number

I if this is equal to other, return zero

public class Cow extends Animal implements Comparable<Cow>{

private int size;

private float milkYield;

private String name;

@Override

public int compareTo(Cow other) {

return Integer.compare(size, other.size);

}

...

}

Java’s boxed primitives have static compare methods.

CompareTo Method
CompareTo is expected to be used in the following way:

I if this is less than other, return a negative number

I if this is greater than other, return a positive number

I if this is equal to other, return zero

public class Cow extends Animal implements Comparable<Cow>{

private int size;

private float milkYield;

private String name;

@Override

public int compareTo(Cow other) {

return name.compareTo(other.name);

}

...

}

Many API classes such as boxed primitives or String implement
the Comparable interface already.

What does it print?

public interface Drivable {

public void startEngine () {

System.out.println("WrummWrumm");

}

public abstract void drive();

}

public class Car implements Drivable {

public void drive() {

super.startEngine ();

System.out.println("rollroll");

}

}

public class Main {

public static void main(String [] args) {

Car c = new Car();

c.drive();

}

}

Does not compile
because interfaces are
not allowed to
implement methods.

What does it print?

public interface Drivable {

public void startEngine () {

System.out.println("WrummWrumm");

}

public abstract void drive();

}

public class Car implements Drivable {

public void drive() {

super.startEngine ();

System.out.println("rollroll");

}

}

public class Main {

public static void main(String [] args) {

Car c = new Car();

c.drive();

}

}

Does not compile
because interfaces are
not allowed to
implement methods.

What does it print?

public interface Drivable {

public abstract void drive();

}

public class Car implements Drivable {

public void drive() {

System.out.println("rollroll");

}

}

public class Polo extends Car {

public void drive() {

System.out.println("PoloPower");

}

}

public class Main {

public static void main(String [] args) {

Polo p = new Polo();

p.drive();

}

}

Prints PoloPower. Car
implements the drive
method and Polo
overrides it.

What does it print?

public interface Drivable {

public abstract void drive();

}

public class Car implements Drivable {

public void drive() {

System.out.println("rollroll");

}

}

public class Polo extends Car {

public void drive() {

System.out.println("PoloPower");

}

}

public class Main {

public static void main(String [] args) {

Polo p = new Polo();

p.drive();

}

}

Prints PoloPower. Car
implements the drive
method and Polo
overrides it.

Summary

I abstract classes can be used to implement common behaviour
without allowing instantiation (concrete vs. abstract)

I abstract methods can be used to enforce API on subclasses

I interfaces allow multiple inheritance but cannot be used to
implement behaviour

Reading

Objects First

Chapter 12 Further Abstraction Techniques

