Inf1B
Object Design

Fiona McNeill

adapting earlier versions by Perdita Stevens, Ewan Klein, Volker Seeker, et al.

School of Informatics

Basic Object Design Principles

Cohesion describes how well a unit of code maps to a
logical task or entity. A good OO design aims
for high cohesion.

Coupling describes the interconnectedness of classes. A
good OO design aims for loose coupling.

Cohesion Example

public static final int FOX_WIN_ROW = O;

public static boolean isFoxWin(String foxPos) {
// error handling code omitted ...

String rowCoord = boardCoords.substring(1);
int foxRow = Integer.parselnt(rowCoord) - 1;

boolean isWin = foxRow == FOX_WIN_ROW;
return isWin;

In this code, the method does two things at the same time.
What if the coordinate format would change?

Cohesion Example

private static final int FOX_WIN_ROW = O;

private static int getRowCoord(String boardCoords) {
String rowCoord = boardCoords.substring(1);
int row = Integer.parselnt(rowCoord) - 1;
return row;

}

public static boolean isFoxWin(String foxPos) {
// error handling code omitted ...

int foxRow = getRowCoord(foxPos);

boolean isWin = foxRow == FOX_WIN_ROW;
return isWin;

This code is now more cohesive and coordinate format changes
would only have to be addressed in one place.

Cohesion Example

Code duplication can be a sign of poor cohesion.

Demo

Coupling Example

public static boolean isFoxWin(String foxPos) {
if (!isBoardCoordinate(pos)) {
throw new IllegalArgumentException("Given position must"
+ " be a valid board coordinate but is: " + pos);

int foxRow = getRowCoord(foxPos);

boolean isWin = foxRow == FOX_WIN_ROW;
return isWin;

Responsibility Driven Design and Encapsulation help to loosen
coupling within code.

Coupling Example

public static boolean isFoxWin(BoardCoordinate foxPos) {
Objects.requireNonNull(foxPos, " ... ");

boolean isWin = foxPos.getRow() == FOX_WIN_ROW;
return isWin;

}

The BoardCoordinate class guarantees valid data and takes
responsibility for coordinate translation. Also, it can be changed
internally without affecting the game logic.

Coupling Example

public class BoardCoordinate {
private final int row;
private final int column;

public BoardCoordinate(int row, int column) {
if (row < 0 || column < 0) {

throw new IllegalArgumentException("Invalid ..

}
this.row = row;
this.column = column;

public int getRow() { return row; }
public int getColumn() { return column; }

@0verride
public String toString() {
String rowRepr = "" + (row + 1);
String columnRepr = "" + (char)(’A’ + column);

return columnRepr + rowRepr;

'll);

Enums

Enumerated Types

A type whose legal values consist of a fixed set of constants.

For example, types of figures in a game:

public static final String HOUND_FIELD = "H";
public static final String FOX_FIELD = "F";

Enumerated Types

A type whose legal values consist of a fixed set of constants.

For example, types of figures in a game:

public static final String HOUND_FIELD = "H";
public static final String FOX_FIELD = "F";

or fruit ...

public static final int APPLE_FUJI = O;
public static final int APPLE_PIPPIN = 1;
public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = O;
public static final int ORANGE_TEMPLE = 1;
public static final int ORANGE_BLOOD = 2;

Enumerated Types

A type whose legal values consist of a fixed set of constants.

For example, types of figures in a game:

public static final String HOUND_FIELD = "H";
public static final String FOX_FIELD = "F";

or fruit ...

public static final int APPLE_FUJI = O;
public static final int APPLE_PIPPIN = 1;
public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = O;
public static final int ORANGE_TEMPLE = 1;
public static final int ORANGE_BLOOD = 2;

Those are know as int enum pattern or String enum pattern.

Enumerated Types

public static final int APPLE_FUJI = O;
public static final int APPLE_PIPPIN = 1;
public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = O;
public static final int ORANGE_TEMPLE = 1;
public static final int ORANGE_BLOOD = 2;

This type of pattern has many shortcomings:

P> no type safety

Enumerated Types

public static final int APPLE_FUJI = O;
public static final int APPLE_PIPPIN = 1;
public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = O;
public static final int ORANGE_TEMPLE = 1;
public static final int ORANGE_BLOOD = 2;

This type of pattern has many shortcomings:
P> no type safety

> little expressive power

Enumerated Types

public static final int APPLE_FUJI = O;
public static final int APPLE_PIPPIN = 1;
public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = O;
public static final int ORANGE_TEMPLE = 1;
public static final int ORANGE_BLOOD = 2;

This type of pattern has many shortcomings:
P> no type safety
> little expressive power

» no distinct name spaces

Enumerated Types

public static final int APPLE_FUJI = O;
public static final int APPLE_PIPPIN = 1;
public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = O;
public static final int ORANGE_TEMPLE = 1;
public static final int ORANGE_BLOOD = 2;

This type of pattern has many shortcomings:
P> no type safety
> little expressive power
» no distinct name spaces

P> no easy way to iterate over all items

Enumerated Types

public
public
public

public
public
public

static final
static final
static final

static final
static final
static final

int
int
int
int
int
int

APPLE_FUJI = 0;
APPLE_PIPPIN = 1;

APPLE_GRANNY_SITH = 2;

ORANGE_NAVEL = O;

ORANGE_TEMPLE = 1;

ORANGE_BLOOD = 2;

>

This type of pattern has many shortcomings:

P> no type safety

>
>
>
>

strings

little expressive power
no distinct name spaces

no easy way to iterate over all items

no easy way to translate into int enum constants printable

Enumerated Types

public static final int APPLE_FUJI = O;
public static final int APPLE_PIPPIN = 1;
public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = O;
public static final int ORANGE_TEMPLE = 1;
public static final int ORANGE_BLOOD = 2;

This type of pattern has many shortcomings:
P> no type safety
> little expressive power
» no distinct name spaces
P> no easy way to iterate over all items
P> no easy way to translate into int enum constants printable
strings
P string enum constants can cause performance problems due to
string comparisson

Enums

Luckily, Java offers a way to overcome all of those with the enum
type:

public enum Figure FOX, HOUND
public enum Apple FUJI, PIPPIN, GRANNY_SMITH
public enum Orange NAVEL, TEMPLE, BLOOD

Enums

Luckily, Java offers a way to overcome all of those with the enum
type:

public enum Figure FOX, HOUND
public enum Apple FUJI, PIPPIN, GRANNY_SMITH
public enum Orange NAVEL, TEMPLE, BLOOD

In Java, enums are full-fledged classes that export one instance for
each enumeration constant via a public static final field.

Enums are type safe

private static Figure swapPlayers(Figure currentTurn) {
if (currentTurn == Figure.FO0X) {
return Figure.HOUND;
} else {
return Figure.FOX;
}
}

All of the following would cause a compiler error.

Figure nextToMove = swapPlayers(Orange.TEMPLE) ;
Figure nextToMove = swapPlayers(Figure.CAT);
Figure nextToMove = swapPlayers(0);

Enums are efficient

private static Figure swapPlayers(Figure currentTurn) {
if (currentTurn == Figure.F0X) {
return Figure.HOUND;
} else {
return Figure.FOX;
}
}

Comparison is fast because only references need to be compared.

Enums can be iterated

for (Apple apple : Apple.values()) {
// do what you want
}

Each enum class automatically comes with a values method which
returns a collection of all available enum instances.

Enums can be printed

for (Apple apple : Apple.values()) {
System.out.println(apple.name());
// or just use toString()

FUJI
PIPPIN
GRANNY_SMITH

Each enum class provides a named string for all of its instances.

Enums can be parsed

String userInput = "BLOOD";
Orange myFruit = Orange.valueOf (userInput);

The valueOf method allows parsing string values to corresponding
enum types. But beware, illegal strings will cause an exception.

Advanced Enum Programming

Since enums are full-fleged classes, much more is possible than
mentioned above:

» specify methods
P> associate data with each constant

> ...

Comparing Objects

Java rules for comparrisson

For Primitives use ==
For Object References use ==

For Object States use equals (if it is implemented)

Custom Types in HashMaps

You can also put your own data types into a HashMap:

HashMap<String, Circle> data = new HashMap<String, Circle>();
data.put("Small", new Circle(2));
data.put("Large", new Circle(200));

Using custom types as keys, is more tricky: You will have to make
sure they have an equals method and produce the same hash
code.

Design Patterns

Towards Software Engineering

First learn your basic tools and material.

Source: https://i.kinja-img.com/gawker-media/image/upload /s-Zo3ESURT—
/c-scale,f_auto,fl_progressive,q-80,w-800/18muwoa3oozwbjpg.jpg

Towards Software Engineering

First learn your basic tools and material.

Then build large houses ...

Source: http://hannesdorfmann.com/images/legohouse/legohouse.jpg

Towards Software Engineering

First learn your basic tools and material.

Then build large houses ...or even cities.

Source: https://i.kinja-img.com/gawker-media/image/upload /s—uTscbBDV-
/c_scale,f_auto,fl_progressive,q-80,w_800/tu3yxy86Ixwmw5vw8yeu.jpg

Design Patterns

Software Design Patterns are blueprints of solutions
for common software design problems.

Cloverleaf |
Interchange /

Source: https://www.rff.com/cloverleaf.png

Classification

» Creational Patterns
» Structural Patterns

» Behavioural Patterns

Creational Example: Singleton

Problem

> access a resource in your program

Creational Example: Singleton

Problem

P access a resource in your program — database resource

Creational Example: Singleton

Problem
P access a resource in your program — database resource

P initialising resource access is expensive

Creational Example: Singleton

Problem
P access a resource in your program — database resource

P initialising resource access is expensive — only one instance

Creational Example: Singleton

Problem
P access a resource in your program — database resource
P initialising resource access is expensive — only one instance

> multiple classes need access

Creational Example: Singleton

Problem
P access a resource in your program — database resource
P initialising resource access is expensive — only one instance

» multiple classes need access — globally available

Creational Example: Singleton Solution?

public class Database {
private final DBConnection connection;

public Database() {
connection = new DBConnection("myuser",
"myhost", "mydatabase");
connection.connect () ;

}

public List<String> query(String q) { ...

Creational Example: Singleton Solution?

public class Database {
private final DBConnection connection;

public Database() {
connection = new DBConnection("myuser",
"myhost", "mydatabase");
connection.connect () ;

}

public List<String> query(String q) { ...

Globally available instance not guaranteed!

Creational Example: Singleton Solution!

public class Database {
private static Database dbase;
private final DBConnection connection;

public Database() {
connection = new DBConnection("myuser",
"myhost", "mydatabase");
connection.connect () ;

}

public List<String> query(String q) { ...

Add private static field for storing the singleton instance.

Creational Example: Singleton Solution!

public class Database {
private static Database dbase;
private final DBConnection connection;

public Database() {
connection = new DBConnection("myuser",
"myhost", "mydatabase");
connection.connect();

}

public static Database getInstance() {
/77
}

public List<String> query(String q) { ...

Declare public static creation method to access the singleton instance.

Creational Example: Singleton Solution!

public class Database {
private static Database dbase;
private final DBConnection connection;

public Database() {
connection = new DBConnection("myuser",
"myhost", "mydatabase");
connection.connect();

}

public static Database getInstance() {
if (dbase == null) dbase = new Database();
return dbase;

3

public List<String> query(String q) {

Lazily create the instance of the singleton if necessary and return it.

Creational Example: Singleton Solution!

public class Database {
private static Database dbase;
private final DBConnection connection;

private Database() {
connection = new DBConnection("myuser",
"myhost", "mydatabase");
connection.connect();

¥
public static Database getInstance() {

if (dbase == null) dbase = new Database();
return dbase;

3

public List<String> query(String q) { ...

Make the singleton constructor private.

Creational Example: Singleton Solution!

public static void main(String[] args) {
Database db = Database.getInstance();
db.query(args[0]);

In a client, use the getlnstance method to access the singleton.

Structural Example: Facade

Problem

P you need to integrate a complex library into your own
codebase

> many interdependencies between your own code and the third
party code

Structural Example: Facade

Problem

P you need to integrate a complex library into your own
codebase

> many interdependencies between your own code and the third
party code
What if a new version of this library is suddenly broken?

What if you find a better library?

Structural Example: Facade

Solution

Use a facade class which provides a simple interface to the library
code.

VideoConverter

Application }9

+ convertVideo(filename, format)

P2
<.

VideoFile
CodecFactory

OggCompression MPEG4
Codec CompressionCodec

Source: https://refactoring.guru/design-patterns/facade

Behavioural Example: Observer

Problem

How to best communicate events between classes?

Source: https://refactoring.guru/design-patterns/observer

Behavioural Example: Observer

Solution

Hey, sign me
up, please!

Subscriber

Publisher

Subscriber

T

- subscribers[]

Me too!

+ addSubscriber(subscriber)
+ removeSubscriber(subscriber)

Source: https://refactoring.guru/design-patterns/observer

Design Pattern Catalog

A large catalog of common design patterns exists:

https://refactoring.guru/design-patterns/catalog

https://refactoring.guru/design-patterns/catalog

Reading

Books
» Objects First Chapter 8
> Effective Java by Joshua Bloch

> Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, Ralph Johnson, John Vlissides,
Richard Helm

Web Resources
> https://refactoring.guru/design-patterns

https://refactoring.guru/design-patterns

