
Inf1B
Object Design

Fiona McNeill
adapting earlier versions by Perdita Stevens, Ewan Klein, Volker Seeker, et al.

School of Informatics

Basic Object Design Principles

Cohesion describes how well a unit of code maps to a
logical task or entity. A good OO design aims
for high cohesion.

Coupling describes the interconnectedness of classes. A
good OO design aims for loose coupling.

Cohesion Example

public static final int FOX_WIN_ROW = 0;

public static boolean isFoxWin(String foxPos) {

// error handling code omitted ...

String rowCoord = boardCoords.substring(1);

int foxRow = Integer.parseInt(rowCoord) - 1;

boolean isWin = foxRow == FOX_WIN_ROW;

return isWin;

}

In this code, the method does two things at the same time.
What if the coordinate format would change?

Cohesion Example

private static final int FOX_WIN_ROW = 0;

private static int getRowCoord(String boardCoords) {

String rowCoord = boardCoords.substring(1);

int row = Integer.parseInt(rowCoord) - 1;

return row;

}

public static boolean isFoxWin(String foxPos) {

// error handling code omitted ...

int foxRow = getRowCoord(foxPos);

boolean isWin = foxRow == FOX_WIN_ROW;

return isWin;

}

This code is now more cohesive and coordinate format changes
would only have to be addressed in one place.

Cohesion Example

Code duplication can be a sign of poor cohesion.

Demo

Coupling Example

public static boolean isFoxWin(String foxPos) {

if (!isBoardCoordinate(pos)) {

throw new IllegalArgumentException("Given position must"

+ " be a valid board coordinate but is: " + pos);

}

int foxRow = getRowCoord(foxPos);

boolean isWin = foxRow == FOX_WIN_ROW;

return isWin;

}

Responsibility Driven Design and Encapsulation help to loosen
coupling within code.

Coupling Example

public static boolean isFoxWin(BoardCoordinate foxPos) {

Objects.requireNonNull(foxPos, " ... ");

boolean isWin = foxPos.getRow() == FOX_WIN_ROW;

return isWin;

}

The BoardCoordinate class guarantees valid data and takes
responsibility for coordinate translation. Also, it can be changed
internally without affecting the game logic.

Coupling Example
public class BoardCoordinate {

private final int row;

private final int column;

public BoardCoordinate(int row, int column) {

if (row < 0 || column < 0) {

throw new IllegalArgumentException("Invalid ...");

}

this.row = row;

this.column = column;

}

public int getRow() { return row; }

public int getColumn() { return column; }

@Override

public String toString() {

String rowRepr = "" + (row + 1);

String columnRepr = "" + (char)(’A’ + column);

return columnRepr + rowRepr;

}

}

Enums

Enumerated Types

A type whose legal values consist of a fixed set of constants.

For example, types of figures in a game:

public static final String HOUND_FIELD = "H";

public static final String FOX_FIELD = "F";

or fruit ...

public static final int APPLE_FUJI = 0;

public static final int APPLE_PIPPIN = 1;

public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = 0;

public static final int ORANGE_TEMPLE = 1;

public static final int ORANGE_BLOOD = 2;

Those are know as int enum pattern or String enum pattern.

Enumerated Types

A type whose legal values consist of a fixed set of constants.

For example, types of figures in a game:

public static final String HOUND_FIELD = "H";

public static final String FOX_FIELD = "F";

or fruit ...

public static final int APPLE_FUJI = 0;

public static final int APPLE_PIPPIN = 1;

public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = 0;

public static final int ORANGE_TEMPLE = 1;

public static final int ORANGE_BLOOD = 2;

Those are know as int enum pattern or String enum pattern.

Enumerated Types

A type whose legal values consist of a fixed set of constants.

For example, types of figures in a game:

public static final String HOUND_FIELD = "H";

public static final String FOX_FIELD = "F";

or fruit ...

public static final int APPLE_FUJI = 0;

public static final int APPLE_PIPPIN = 1;

public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = 0;

public static final int ORANGE_TEMPLE = 1;

public static final int ORANGE_BLOOD = 2;

Those are know as int enum pattern or String enum pattern.

Enumerated Types
public static final int APPLE_FUJI = 0;

public static final int APPLE_PIPPIN = 1;

public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = 0;

public static final int ORANGE_TEMPLE = 1;

public static final int ORANGE_BLOOD = 2;

This type of pattern has many shortcomings:

I no type safety

I little expressive power

I no distinct name spaces

I no easy way to iterate over all items

I no easy way to translate into int enum constants printable
strings

I string enum constants can cause performance problems due to
string comparisson

Enumerated Types
public static final int APPLE_FUJI = 0;

public static final int APPLE_PIPPIN = 1;

public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = 0;

public static final int ORANGE_TEMPLE = 1;

public static final int ORANGE_BLOOD = 2;

This type of pattern has many shortcomings:

I no type safety

I little expressive power

I no distinct name spaces

I no easy way to iterate over all items

I no easy way to translate into int enum constants printable
strings

I string enum constants can cause performance problems due to
string comparisson

Enumerated Types
public static final int APPLE_FUJI = 0;

public static final int APPLE_PIPPIN = 1;

public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = 0;

public static final int ORANGE_TEMPLE = 1;

public static final int ORANGE_BLOOD = 2;

This type of pattern has many shortcomings:

I no type safety

I little expressive power

I no distinct name spaces

I no easy way to iterate over all items

I no easy way to translate into int enum constants printable
strings

I string enum constants can cause performance problems due to
string comparisson

Enumerated Types
public static final int APPLE_FUJI = 0;

public static final int APPLE_PIPPIN = 1;

public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = 0;

public static final int ORANGE_TEMPLE = 1;

public static final int ORANGE_BLOOD = 2;

This type of pattern has many shortcomings:

I no type safety

I little expressive power

I no distinct name spaces

I no easy way to iterate over all items

I no easy way to translate into int enum constants printable
strings

I string enum constants can cause performance problems due to
string comparisson

Enumerated Types
public static final int APPLE_FUJI = 0;

public static final int APPLE_PIPPIN = 1;

public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = 0;

public static final int ORANGE_TEMPLE = 1;

public static final int ORANGE_BLOOD = 2;

This type of pattern has many shortcomings:

I no type safety

I little expressive power

I no distinct name spaces

I no easy way to iterate over all items

I no easy way to translate into int enum constants printable
strings

I string enum constants can cause performance problems due to
string comparisson

Enumerated Types
public static final int APPLE_FUJI = 0;

public static final int APPLE_PIPPIN = 1;

public static final int APPLE_GRANNY_SITH = 2;

public static final int ORANGE_NAVEL = 0;

public static final int ORANGE_TEMPLE = 1;

public static final int ORANGE_BLOOD = 2;

This type of pattern has many shortcomings:

I no type safety

I little expressive power

I no distinct name spaces

I no easy way to iterate over all items

I no easy way to translate into int enum constants printable
strings

I string enum constants can cause performance problems due to
string comparisson

Enums

Luckily, Java offers a way to overcome all of those with the enum
type:

public enum Figure FOX, HOUND

public enum Apple FUJI, PIPPIN, GRANNY_SMITH

public enum Orange NAVEL, TEMPLE, BLOOD

In Java, enums are full-fledged classes that export one instance for
each enumeration constant via a public static final field.

Enums

Luckily, Java offers a way to overcome all of those with the enum
type:

public enum Figure FOX, HOUND

public enum Apple FUJI, PIPPIN, GRANNY_SMITH

public enum Orange NAVEL, TEMPLE, BLOOD

In Java, enums are full-fledged classes that export one instance for
each enumeration constant via a public static final field.

Enums are type safe

private static Figure swapPlayers(Figure currentTurn) {

if (currentTurn == Figure.FOX) {

return Figure.HOUND;

} else {

return Figure.FOX;

}

}

All of the following would cause a compiler error.

Figure nextToMove = swapPlayers(Orange.TEMPLE);

Figure nextToMove = swapPlayers(Figure.CAT);

Figure nextToMove = swapPlayers(0);

Enums are efficient

private static Figure swapPlayers(Figure currentTurn) {

if (currentTurn == Figure.FOX) {

return Figure.HOUND;

} else {

return Figure.FOX;

}

}

Comparison is fast because only references need to be compared.

Enums can be iterated

for (Apple apple : Apple.values()) {

// do what you want

}

Each enum class automatically comes with a values method which
returns a collection of all available enum instances.

Enums can be printed

for (Apple apple : Apple.values()) {

System.out.println(apple.name());

// or just use toString()

}

Output

FUJI

PIPPIN

GRANNY_SMITH

Each enum class provides a named string for all of its instances.

Enums can be parsed

String userInput = "BLOOD";

Orange myFruit = Orange.valueOf(userInput);

The valueOf method allows parsing string values to corresponding
enum types. But beware, illegal strings will cause an exception.

Advanced Enum Programming

Since enums are full-fleged classes, much more is possible than
mentioned above:

I specify methods

I associate data with each constant

I ...

Comparing Objects

Java rules for comparrisson

For Primitives use ==

For Object References use ==

For Object States use equals (if it is implemented)

Custom Types in HashMaps

You can also put your own data types into a HashMap:

HashMap<String, Circle> data = new HashMap<String, Circle>();

data.put("Small", new Circle(2));

data.put("Large", new Circle(200));

Using custom types as keys, is more tricky: You will have to make
sure they have an equals method and produce the same hash

code.

Design Patterns

Towards Software Engineering

First learn your basic tools and material.

Source: https://i.kinja-img.com/gawker-media/image/upload/s–Zo3E8URT–
/c scale,f auto,fl progressive,q 80,w 800/18muwoa3oozw6jpg.jpg

Towards Software Engineering

First learn your basic tools and material.

Then build large houses ...

Source: http://hannesdorfmann.com/images/legohouse/legohouse.jpg

Towards Software Engineering

First learn your basic tools and material.

Then build large houses ...or even cities.

Source: https://i.kinja-img.com/gawker-media/image/upload/s–uTscbBDV–
/c scale,f auto,fl progressive,q 80,w 800/tu3yxy86lxwmw5vw8yeu.jpg

Design Patterns

Software Design Patterns are blueprints of solutions
for common software design problems.

Source: https://www.rff.com/cloverleaf.png

Classification

I Creational Patterns

I Structural Patterns

I Behavioural Patterns

Creational Example: Singleton

Problem
I access a resource in your program

Creational Example: Singleton

Problem
I access a resource in your program → database resource

Creational Example: Singleton

Problem
I access a resource in your program → database resource

I initialising resource access is expensive

Creational Example: Singleton

Problem
I access a resource in your program → database resource

I initialising resource access is expensive → only one instance

Creational Example: Singleton

Problem
I access a resource in your program → database resource

I initialising resource access is expensive → only one instance

I multiple classes need access

Creational Example: Singleton

Problem
I access a resource in your program → database resource

I initialising resource access is expensive → only one instance

I multiple classes need access → globally available

Creational Example: Singleton Solution?

public class Database {

private final DBConnection connection;

public Database() {

connection = new DBConnection("myuser",

"myhost", "mydatabase");

connection.connect();

}

public List<String> query(String q) { ...

}

Globally available instance not guaranteed!

Creational Example: Singleton Solution?

public class Database {

private final DBConnection connection;

public Database() {

connection = new DBConnection("myuser",

"myhost", "mydatabase");

connection.connect();

}

public List<String> query(String q) { ...

}

Globally available instance not guaranteed!

Creational Example: Singleton Solution!

public class Database {

private static Database dbase;

private final DBConnection connection;

public Database() {

connection = new DBConnection("myuser",

"myhost", "mydatabase");

connection.connect();

}

public List<String> query(String q) { ...

}

Add private static field for storing the singleton instance.

Creational Example: Singleton Solution!

public class Database {

private static Database dbase;

private final DBConnection connection;

public Database() {

connection = new DBConnection("myuser",

"myhost", "mydatabase");

connection.connect();

}

public static Database getInstance() {

// ?

}

public List<String> query(String q) { ...

}

Declare public static creation method to access the singleton instance.

Creational Example: Singleton Solution!
public class Database {

private static Database dbase;

private final DBConnection connection;

public Database() {

connection = new DBConnection("myuser",

"myhost", "mydatabase");

connection.connect();

}

public static Database getInstance() {

if(dbase == null) dbase = new Database();

return dbase;

}

public List<String> query(String q) { ...

}

Lazily create the instance of the singleton if necessary and return it.

Creational Example: Singleton Solution!

public class Database {

private static Database dbase;

private final DBConnection connection;

private Database() {

connection = new DBConnection("myuser",

"myhost", "mydatabase");

connection.connect();

}

public static Database getInstance() {

if(dbase == null) dbase = new Database();

return dbase;

}

public List<String> query(String q) { ...

}

Make the singleton constructor private.

Creational Example: Singleton Solution!

public static void main(String[] args) {

Database db = Database.getInstance();

db.query(args[0]);

}

In a client, use the getInstance method to access the singleton.

Structural Example: Facade

Problem
I you need to integrate a complex library into your own

codebase

I many interdependencies between your own code and the third
party code

What if a new version of this library is suddenly broken?

What if you find a better library?

Structural Example: Facade

Problem
I you need to integrate a complex library into your own

codebase

I many interdependencies between your own code and the third
party code

What if a new version of this library is suddenly broken?

What if you find a better library?

Structural Example: Facade

Solution

Use a facade class which provides a simple interface to the library
code.

Source: https://refactoring.guru/design-patterns/facade

Behavioural Example: Observer

Problem

How to best communicate events between classes?

Source: https://refactoring.guru/design-patterns/observer

Behavioural Example: Observer

Solution

Source: https://refactoring.guru/design-patterns/observer

Design Pattern Catalog

A large catalog of common design patterns exists:

https://refactoring.guru/design-patterns/catalog

https://refactoring.guru/design-patterns/catalog

Reading

Books
I Objects First Chapter 8

I Effective Java by Joshua Bloch

I Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, Ralph Johnson, John Vlissides,
Richard Helm

Web Resources
I https://refactoring.guru/design-patterns

https://refactoring.guru/design-patterns

