Foundations of Data Science:

 Randomness, sampling and simulation Introduction to statistical inference
Where are we in the course?

I. About data: collection, representation, wrangling, exploration, visualisation and descriptive stats
II. Intro to Machine Learning
III. Linear models
IV. Statistical Inference
V. Regression and inference
A

Inferential statistics

The process of drawing conclusions about quanties that are not observed.
E.g. Wildcats

Wikipedia, Peter Trimming, CC BY 2.0
We observe the mean of a sample

We infer the mean of the population

 3 dim, lay amily,
 - \rightarrow |in)
 Primetherrmal
ec期组:

 Feeno
 silla-M1ג Wikipedia
We infer the meaning of the messages

Inferential statistics tasks

1. Estimation
2. Hypothesis testing
3. Comparing two samples (A / B testing)

Inferential statistics tasks: Estimation

$[304 \mathrm{~g}, 336 \mathrm{~g}]$ CI.

Peter Trimming, CC BY 2.0, Wikipedia
Point estimates
Confidence intervals: how confident are we in the estimate?

Inferential statistics tasks: Hypothesis testing
Yes/no questions: E.g. 1: "Is Chocolate good for you"
E.g. 2: Swain versus Alabama (1965).

Is this jury selection procedure biased?
Population of
Alabama
269% Black
74% Non-
black

Inferential statistics tasks: Comparing two samples (A / B testing)
E.g. 1. Is a vaccine better than a placebo?
E.g. 2. Does providing recommendations lead to more sales?

Two approaches to statistical inference

1. Computational: "Statistical simulations"

+ Few assumptions $=>$ can be applied to many situations
+ Little theory required
+ Hopefully intuitive
- Can be compute-intensive

2. Mathematical: Statistical theory

+ Not compute-intensive
+ Standard in scientific literature
- Can depend on assumptions that aren't true (e.g. normal distributions)

Plan for statistical inference

1. Randomness, sampling and simulations (S1 Week 10)
2. Estimation, including confidence intervals (S1 Week 11)
3. Hypothesis testing (S2 Week 1)
4. Logistic regression (S2 Week 1)
5. A/B testing (S2 Week 2)

How can we address these questions?

1. What is the mean and median age of the population of all 2 p and 10 p coins in circulation?
2. Are tosses of 2 p and 10 p coins biased, i.e. is the probability of heads or tails different from $1 / 2$?
Head Tail Head Tail

Old style

New style

Let's get sampling!

1. Go to the form at the right
2. Record the

- denomination (2p/10p)
- style (old/new)
- year

3. Toss the coin 8 times
and record the results
4. Submit the form

Coin tossing data

https://forms.office.com/e/SKNgiQmB4N

Results

How certain are we that the mean year is what we compute?

Do we think that the coins are biased or not?

