Foundations of Data Science: Randomness, sampling and simulation – Sampling, statistics, simulations

Last lecture...

- 1. Intro to inferential stats
 - Estimation
 - Hypothesis testing
 - Comparing two samples (A/B testing)
- 2. Two examples of inference on coins
 - Estimate the average year of a coin
 - we have an estimate, but we don't know how precise it is
 - Test the hypothesis that the coins are unbiased
 - we think the coins are unbiased, but we can't prove it

Today

- Big idea: method to determine if the coin is biased: Statistical simulation

- Steps:

- 1. sampling, both random and non-random
- 2. definition of a "statistic"
- 3. statistical simulation
- Then get intuition about what happens as sample size changes
 - 1. distribution of statistics from small samples
 - 2. distribution of statistics from large samples

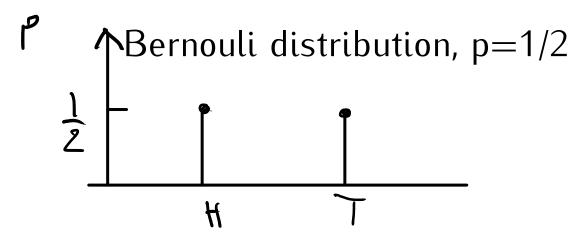
Statistical simulation overview

Reality

Experiment

232 tosses, of which 121 Heads and 111 Tails

Model of unbiased coin

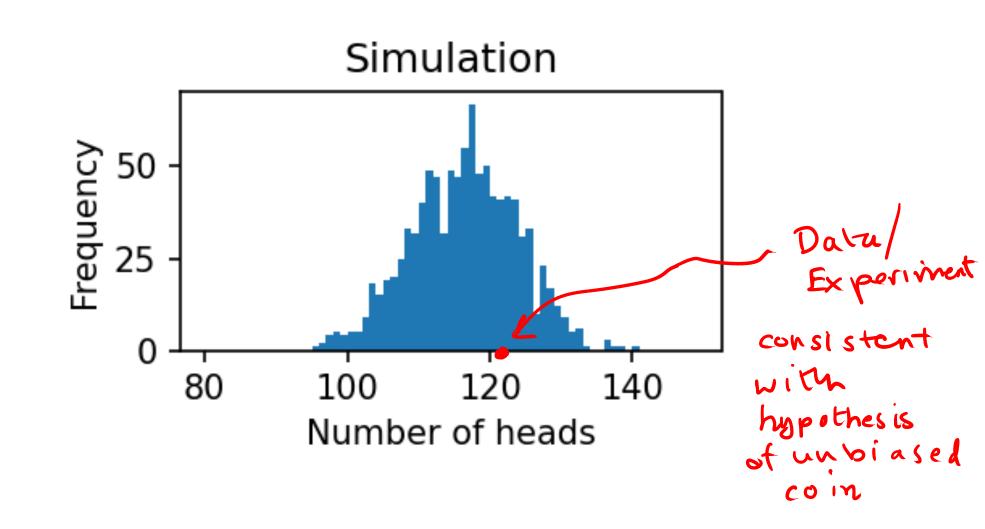


Computational simulation

232 samples, of which 126 Heads and \12 Tails 166 '\'\'\'\'\'

Statistical simulation overview

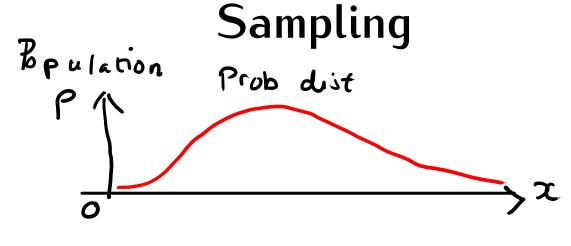
1000 repetitions later... consistent with experiment?

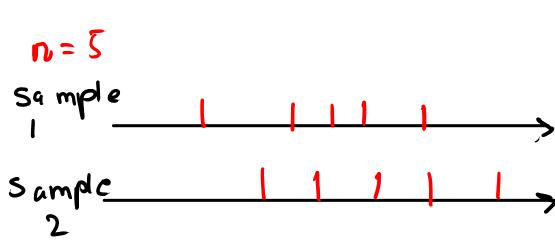


Definition of a random sample

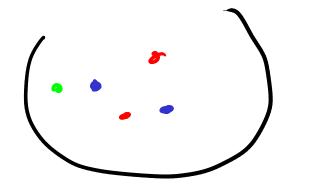
In a random sample of size \wedge from either

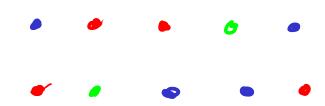
- a probability distribution
- or a finite population of \mathbb{N} items the random variables \mathbb{X}_1 , \mathbb{X}_n comprising the sample are all
- 1. independent and
- 2. have the same probability distribution



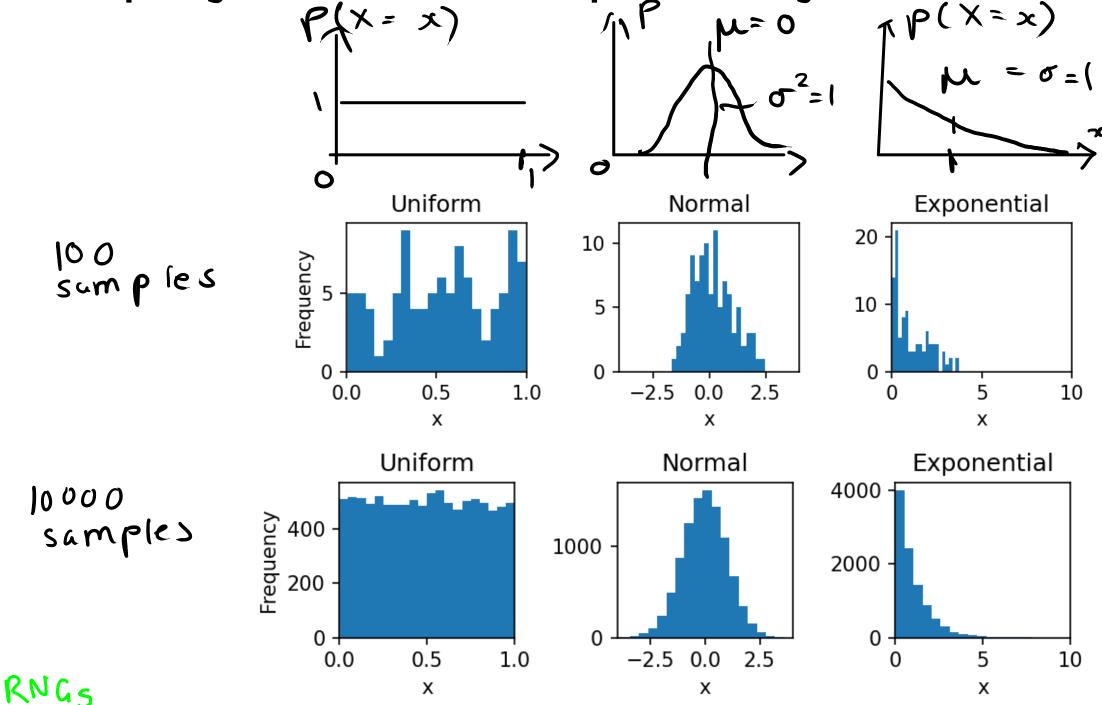


Discrete items

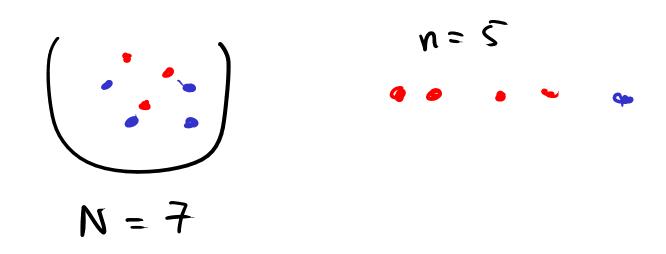




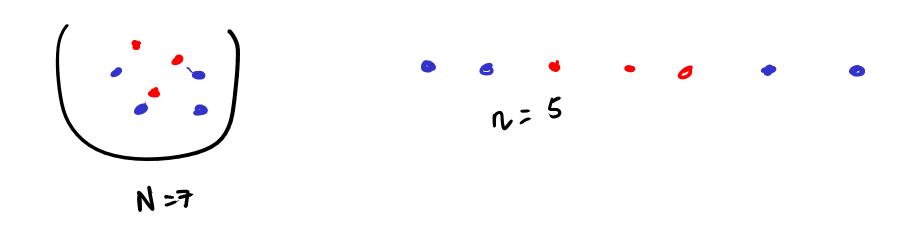
Sampling from continuous probability distributions



Sampling from a discrete set of items without replacement



Sampling from a discrete set of items with replacement

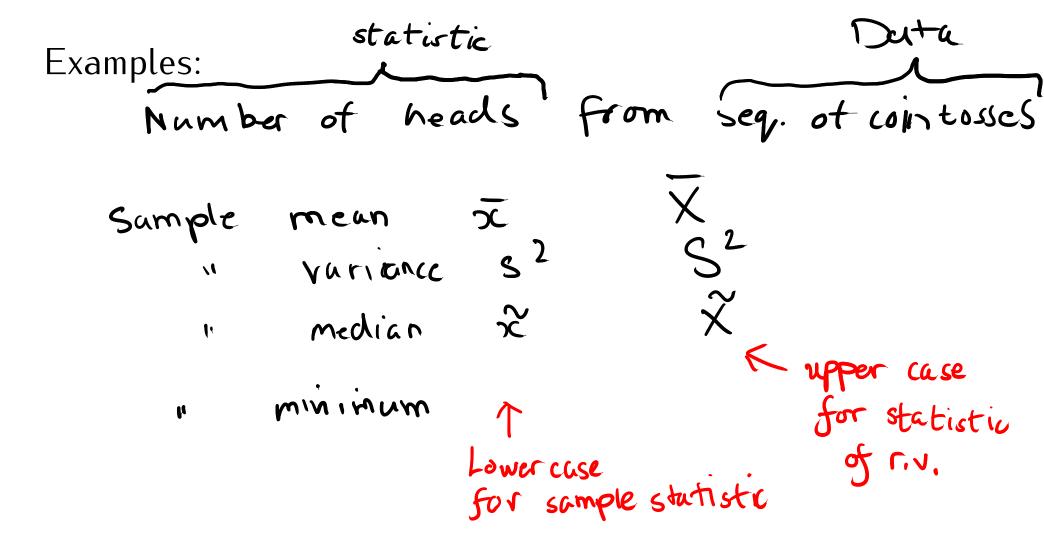


Non-random samples

Day	2	
Mon	100	-
Tue	120	
Wed	130	
Thu	140	
Fri	150	
Sut	130	
Sun	120	
Mon	100	*
\ \	; 1,	

Definition of a statistic

A statistic is a any quantity whose value can be calculated from sample data



Recipe for a statistical simulation

- A. Decide on
- Statistic of interest
- Population distribution or set of items Burouli p= 05

- # nends

- Sample size n= 232
- Number of repetitions k = 1000
- B. Simulation procedure
- 1. For in 1, ..., k
 - a. Sample η , items from the population distribution or set
 - b. Compute and store statistic of interest
- 2. Generate histogram of the k stored sample statistics

Statistical simulation applied to Swain versus Alabama

8 out of 100 people selected for a jury panel were black 26% of population of Alabama were black Let's simulate unbiased jury selection:

Statistic: To # black people on panel
of n=100 members

Papulation Bernouli dist with sample space

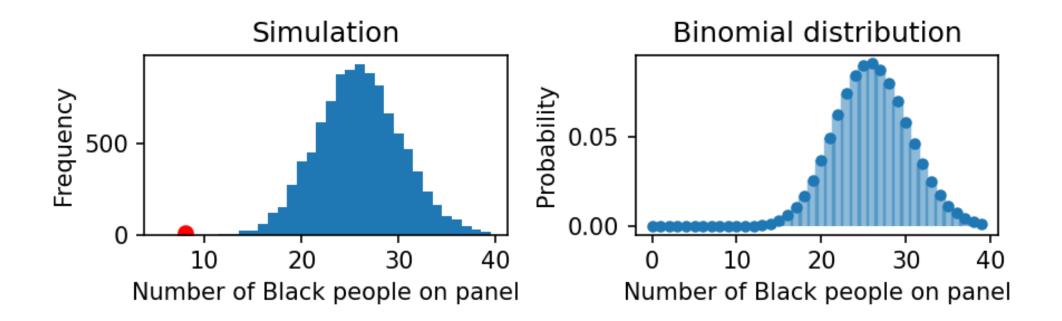
{ \$lack, Non-black}

p(Black)=0.26

Sample size n=100

Num. repetitions k=10,000

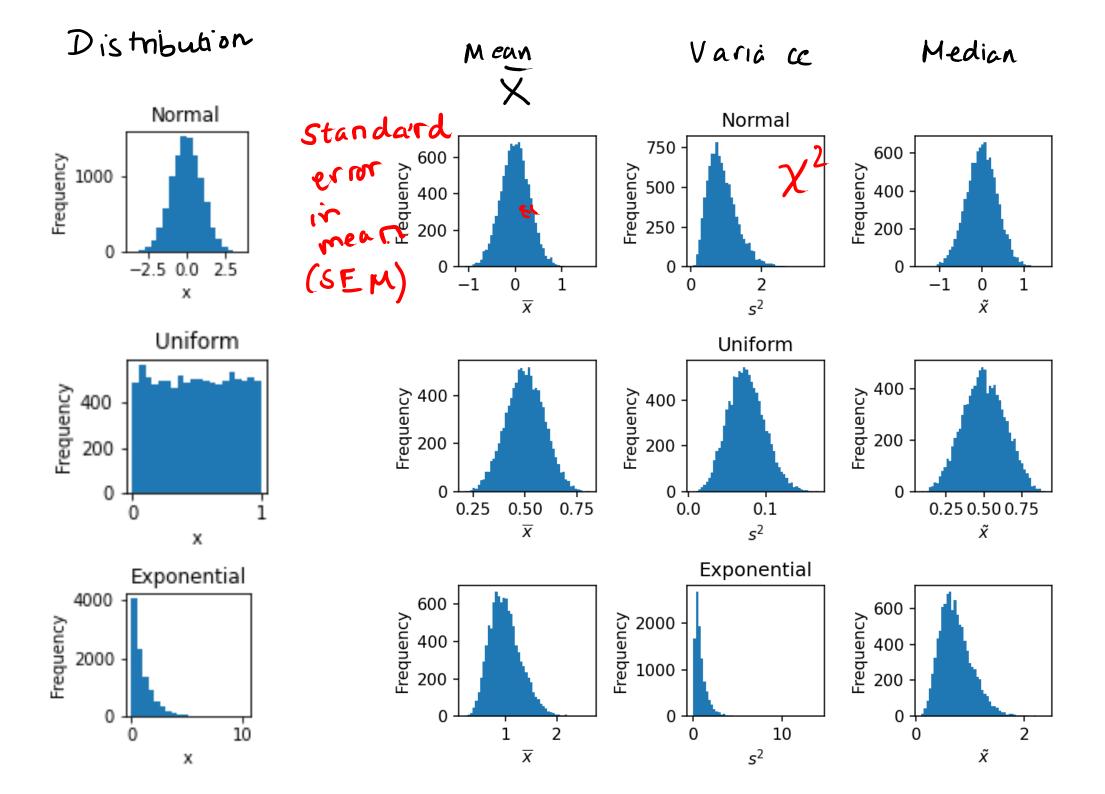
Swain versus Alabama simulation results



Foundations of Data Science:
Randomness, sampling and simulation –
Distributions of sample statistics from
small samples

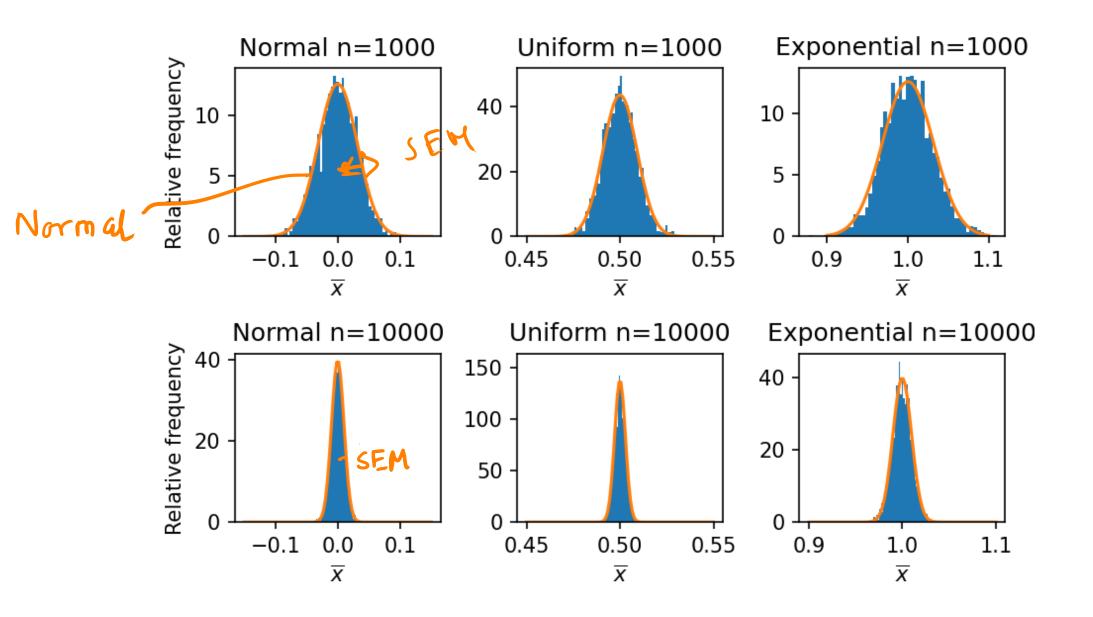
Example: Sampling statistics from continous distributions

- Statistics: X, 5², X
- Distributions: Nomal, Uniform and exponential
- Sample size = n=10
- Num. replications = 12 = 10000



Foundations of Data Science:
Randomness, sampling and simulation –
Distribution of sample mean from
large samples

Distribution of sample mean from large samples



Central Limit Theorem

Distribution of the mean (or the sum) of a random sample drawn from any distribution will converge on a normal distribution

Expected value of sample mean is the same as the mean of the population distribution

Expected variance of the mean

Standard error in the mean (SEM)

$$\sigma_{\overline{\chi}} = \frac{\sigma}{\ln}$$

Law of large numbers

In the limit of infinite sample size \hbar , the expected value of the sample mean χ tends to the population mean μ and the expected value of the sample variance tends to 0.

7 Law of average s

Summary

- Statistical simulations
 - Sampling
 - Statistics
- Distributions of common statistics for small sample sizes
- Sampling distribution of the mean is normal for large samples from any distribution (Central Limit Theorem)