Foundations of Data Science: Estimation - Point estimation
Plan for statistical inference

1. Randomness, sampling and simulations (S1 Week 10)
2. Estimation, including confidence intervals (S1 Week 11)
3. Hypothesis testing (S2 Week 1)
4. Logistic regression (S2 Week 1)
5. A/B testing (S2 Week 2)
Last lecture...

1. Sampling
 - random
 - non-random

2. Inference on testing the hypothesis that the coin is biased
 - Statistical simulations

3. Sampling distributions of statistics
 - mean, variance, median

4. Sampling distribution of the mean in large samples
 - Central Limit Theorem
Today

- Big idea: method to determine how precise our estimate of the average age of 2p coin is
 - Confidence interval

- Steps:
 1. Concept of estimator
 2. Sampling distribution of the estimator gives indication of uncertainty in estimate
 3. Confidence interval
Overview

Sample

\[n = 29 \]

\[\bar{x} = 2001.6 \text{ years} \]
\[s = 11.4 \text{ years} \]
\[\frac{s}{\bar{x}} = 2.1 \text{ years} \]

Population

\[N \sim 1 \times 10^9 \]

\[\text{distribution}\]

\[\mu, \sigma^2 \]

\[n = 29 \times \]

\[n = 29 \times \]

\[\text{sample} \]

\[\bar{x}_1 = 2000 \]
\[\bar{x}_2 = 2002 \]

Sampling dist of mean
A population that's not countable
Parameters

Of a finite population

Mean μ

Variance σ^2

Of a distribution

$p(x)$

$p(x) = \lambda e^{-\lambda x}$

$\mu = \frac{1}{\lambda}$

$\sigma = \frac{1}{\lambda}$
Problems

1. Construct a point estimator for parameters

2. Determine how accurate that estimate is using confidence intervals

Notation: Generic parameter

Its point estimator

E.g.
There can be more than one estimator for a parameter

E.g. Symmetric distribution:

\[\hat{\mu} = ? \]
Can you think of something else we could estimate about the population of 2p coins?

- What would you estimate?
- How would you estimate it?
- Would there be any problems with your estimate?
Foundations of Data Science: Estimation - Bias and variance
Estimation bias and variance

Unbiased estimator

\[p(\hat{\Theta}_1) \]

Variance of estimator \(V[\hat{\Theta}_1] \)

\(\theta \) True value of parameter

Unbiased estimator with low variance

\[p(\hat{\Theta}_3) \]

Variance of estimator \(V[\hat{\Theta}_3] \)

Biased estimator

\[p(\hat{\Theta}_2) \]

\(E[\hat{\Theta}_2] \)

bias of \(\hat{\Theta}_2 \) \(= \theta - E[\hat{\Theta}] \)

Biased estimator with low variance

\[p(\hat{\Theta}_4) \]

\(E[\hat{\Theta}_4] \)

\[\text{MSE} = E[(\theta - \hat{\Theta})^2] = V[\hat{\Theta}] + (\theta - E[\hat{\Theta}])^2 \]
Example: estimator of mean of normal distribution with known variance

Normal distribution

\[\sigma \text{ - known} \]

\[\mu ? \]

Estimator: \(\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \)

\[n = 5 \]

Standardised variable

\[\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \]

Standardised normal distribution - the \(z \)-distribution

\[E[\overline{X}] = \mu \quad \Rightarrow \quad E[\overline{X}] - \mu = 0 = \text{bias} \]

\[\text{MSE} = E[(\overline{X} - \mu)^2] = \text{Var}[\overline{X}] = \frac{\sigma^2}{n} \]
Example: a contrived estimator with bias

Estimator: \[\hat{\mu} = \bar{x} + 1 \]

\begin{align*}
\text{bias} &= E[\bar{x} + 1] - \mu \\
&= E[\bar{x}] + 1 - \mu \\
&= 1
\end{align*}
Example from machine learning

Suppose
1. We've used cross-validation to choose the hyperparameters in k-Nearest Neighbours
2. We've estimated the accuracy on the testing folds in cross-validation

Identify ψ and $\hat{\theta}$

Is $\hat{\theta}$ an unbiased estimator of θ?
Foundations of Data Science:
Estimation -
Standard error
How far is $\hat{\Theta}$ from Θ?

Ideal world: resample $\hat{\Theta}$ from the population

E.g. $\hat{\Theta} = \hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

As $n \to \infty$

Variance tends to $V[\hat{\Theta}]$

Standard error of an estimator $\sigma_{\hat{\Theta}} = \sqrt{V[\hat{\Theta}]}$
Real world

We have only one sample.

We can't resample from the population to estimate $\sqrt{\mathbb{V}[\hat{\theta}]}$

1. For the mean, we can estimate the standard error of the mean using the sample variance of the sample

2. For all estimators, we can use the bootstrap method to estimate the distribution of the estimator, and thus the standard error of the estimator (next lecture)
Standard error of an estimator

How far is \(\hat{\theta} \) from \(\theta \)?

Standard error of an estimator

\[
\sigma_{\hat{\theta}} = \sqrt{\text{V}[\hat{\theta}]}
\]

\[
\approx \sqrt{\text{MSE}(\hat{\theta})}
\]

Standard error of the mean (SEM)

\[
\sigma_{\hat{\mu}} = \frac{\sigma}{\sqrt{n}}
\]
Standard error of mean for known distribution variance σ

Standard deviation

$$SEM = \frac{1}{\sqrt{n}} = 0.316$$

$$\sigma_{\hat{\mu}} = \frac{1}{\sqrt{100}} = 0.01$$
Estimated standard error for distribution with unknown variance σ

What if we don't know σ?

Estimated S.E. of estimator $\hat{\sigma}$

Estimated SEM $\hat{\sigma}_{\bar{X}} = \frac{s}{\sqrt{n}}$

n large \Rightarrow $\hat{\sigma}_{\bar{X}} \approx \hat{\sigma}$
Problem with estimated SEM

Know σ:

$$\hat{\mu} = \bar{X}$$

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \text{ normally distributed}$$

$$\frac{1}{\sigma}$$

Don't know σ:

$$\frac{\bar{X} - \mu}{S / \sqrt{n}} \Rightarrow \text{Not normally dist.}$$

Random variable
Distribution of estimator -> Confidence intervals

given one point estimate $\hat{\theta}$ we want to be able to say that an interval has a specified chance of containing the true parameter θ.

\[\text{Diagram:}
\begin{array}{c}
\text{Repetition} \\
\end{array}
\begin{array}{c}
\mu \text{ and CIs for } \hat{\mu} \\
\end{array}
\]
Summary

1. Progress on estimating the uncertainty in the estimate of the average year of a 2p coin
2. Estimators and parameters
3. Bias and variance of estimators
4. The estimator distribution and standard error
5. The distribution of the mean estimator for a distribution with known variance
6. The distribution of the mean estimator for a distribution with unknown variance
7. Introduction to the confidence interval