Foundations of Data Science: Estimation – Principle of confidence intervals

Last Lecture

- 1. Parameter
 - value of a statistic (e.g. mean or max) in population
 - parameter in distribution (e.g. mean, variance of normal)
- 2. Point estimator
 - Method of converting sample into estimate of paramater
 - E.g. Mean of sample () estimates mean of population
- 3. Point estimator is random variable
 - a different random sample from population => different value of point estimator
 - But we only have one sample, so only one value
- 4. For mean, standard error of mean gives width of sampling distribution

Today

- 1. How to convert inferred sampling distribution of estimator into a confidence interval
- 2. How to compute a confidence interval for mean of large sample z distribution
- 3. Confidence intervals of parameters other than the meanBootstrap
- 4. How big should a confidence interval be?
- 5. How to calculate a confidence interval for mean of a small sample t ditribution

Confidence interval of the mean of a sample from a distribution with unknown mean and known variance

E.g.: Confidence intervals of mean of 100 samples from normal distribution with mean 0 and variance 1

Foundations of Data Science: Estimation – Definition of a confidence interval

Definition of a confidence interval

$$\begin{array}{l} (\hat{v} - a\hat{\sigma}_{\hat{v}}, \hat{V} + b\hat{\sigma}_{\hat{v}}) \\ (\hat{v} - a\hat{\sigma}_{\hat{v}}, \hat{V} + b\hat{\sigma}_{\hat{v}}) \\ \text{that has a specified chance } 1 - \alpha \text{ of} \\ \text{containing the parameter } \vartheta. \\ \text{e.g.} = \alpha = 0.05 \Rightarrow 1 - 0.05 = 95\% \text{ c. I.} \\ P(\hat{V} - a\hat{v}_{\hat{v}} < \vartheta < \hat{V} + b\hat{\sigma}_{\hat{v}}) = 1 - \alpha \end{array}$$

$$P(\hat{\vartheta} - a\hat{\upsilon}_{\hat{\varrho}} < \vartheta < \hat{\vartheta} + b\hat{\sigma}_{\hat{\varrho}}) = 1 - \alpha$$

$$\Rightarrow P(-\hat{\vartheta} + a\hat{\sigma}_{\hat{\vartheta}} > -\vartheta > -\hat{\vartheta} - b\hat{\sigma}_{\hat{\vartheta}}) = 1 - \alpha$$

$$\Rightarrow P(-\hat{\vartheta} + a\hat{\sigma}_{\hat{\vartheta}} > -\vartheta > -\vartheta - b\hat{\sigma}_{\hat{\vartheta}}) = 1 - \alpha$$

$$\Rightarrow P(-\hat{\vartheta} + a\hat{\sigma}_{\hat{\vartheta}} > -\vartheta - b\hat{\sigma}_{\hat{\vartheta}}) = 1 - \alpha$$

$$\Rightarrow P(-\hat{\vartheta} + a\hat{\sigma}_{\hat{\vartheta}} - \vartheta - b\hat{\sigma}_{\hat{\vartheta}}) = 1 - \alpha$$

$$F(-b < \hat{\vartheta} - \vartheta - a\hat{\sigma}_{\hat{\vartheta}} - \theta\hat{\sigma} - a\hat{\sigma}_{\hat{\vartheta}} = 1 - \alpha$$

$$\widehat{\sigma}_{\hat{\vartheta}} = r \cdot \alpha$$
in general not normal

The distribution of the standardised sample mean of a large sample

Foundations of Data Science: Estimation – Method of estimating the confidence interval of the mean of a large sample

Methods of estimating confidence intervals

E.g. Japanese restaurant reservation times

Mstyslav Chernov, Wikimedia Commons, CC BY SA 3.0

	Population	Sample
count	92378.00	1000.00
mean	8.30	8.06
std	25.65	27.72
min	0.00	0.00
25%	0.21	0.17
50%	2.08	1.96
75%	7.88	6.92
max	393.12	364.96

$$N = 92372 \qquad n = 1000 \\ M = 8.30 \qquad 5C = 8.06 \\ \sigma = 25.65 \qquad S = 27.72$$

Estimated SEM =
$$S = \frac{27 \cdot 72}{\sqrt{1000}} = 0.88$$
 days $\hat{\sigma}_{\bar{\chi}}$ $\hat{\kappa} = \sqrt{1000}$

Large sample => Normal distribution of sample mean => "z" distribution

$$959_{0} = 7 \quad \alpha = 0.05$$

 $Z_{A/2} = Z_{0.025} = 1.96$

 $(\overline{x} - \overline{z}_{0.025} \hat{\phi}_{\overline{x}}) \overline{x} + \overline{z}_{0.025} \hat{\phi}_{\overline{y}}) = (6.34, 9.78)$

Reporting confidence intervals

$$M = 8.06, CT = 6.34 - 9.78 (95%)(T)$$

$$\hat{\mu} = 8.06 \pm 1.72 (95\% cT)$$

$$\frac{4}{20.025} \hat{e_{\chi}} = 1.96 \times 0.88$$

$$\hat{\mu} = 8.06 \pm 0.88 (Mean \pm 1.5EM)$$

Summary

- confidence intervals for mean of large samples
- General definition of confidence intervals
- Example of theoretical method of computing confidence intervals from sample data.

Summary so far

- Confidence intervals for mean of large samples
- General definition of confidence intervals
- Example of theoretical method of computing confidence intervals from sample data

Foundations of Data Science: Estimation – Bootstrapping

Principle of bootstrapping

- Treat the sample like a population
- Resample estimator from it to get sampling distribution
- Sample is similarly to population for a large sample

Bootstrap confidence interval for the mean

General formulation of the bootstrap

Bootstrap CI.
$$\hat{V}$$
 $=$ $\hat{\sigma}^2$
- For jin 1,..., B

- Sample n items from x with replacement

- Boutskap estimator of variance of statistic

 $S^{2}_{boot} = \frac{B}{J^{-1}} \left(\hat{Q}_{J}^{*} - \hat{Q}_{J} \right)^{2}$ - Find CI from Boot shrap dist. $\sqrt{centrality} - median mean$ $\times Eurenes - max or min$

Bootstrap coin year

Foundations of Data Science: Estimation – Interpretation of confidence intervals

Confidence intervals are a random interval

How big should a confidence interval be?

Wikimedia commons, Silberwolf, CC BY 2.5

Wikimedia commons, Kiefer, CC BY SA 2.0

How big should a confidence interval be?

- Say 68% confident of being in
 2 years of the true date
- What could go wrong if the estimated date is further away?

Foundations of Data Science: Estimation – Confidence intervals for the mean for small samples

Small samples

$$h \leq 40$$

$$n = 29 \text{ coins}$$

$$\overline{\chi} = 2001.551 \text{ years} \qquad s = 11.444 \text{ years}$$
Estimated SEM, $\sigma_{\overline{\chi}} = \frac{s}{\sqrt{n}} = \frac{11.444}{\sqrt{29}} = 2.125 \text{ years}$

$$\hat{\mu} = \overline{\chi}$$

$$t - statistic T = \frac{\overline{\chi} - \mu}{\widehat{\sigma_{\chi}}}$$

The t-distribution

Confidence intervals with small samples

Using the t-distribution to calculate a confidence interval

95% C.
$$T \Rightarrow x = 0.05$$

Sample size $n \Rightarrow y = n - 1$ d.f.
 $t_{x/2} = t_{x/2}, n - 1$ t-critical value
 $\overline{x} - t_{x,n-1} \quad \overline{\phi_{x}}, \quad \overline{y} + t_{x,n-1} \quad \overline{\phi_{x}}$
 $n = 2q, \quad x = 0.05 \Rightarrow t_{0.025}, \quad 2q - 1 = t_{0.027}, \quad 28$
 $t_{0.025}, \quad 28 \quad \overline{\phi_{x}} = 2.281$
 $t_{0.025}, \quad 28 \quad \overline{\phi_{x}} = 2.281 \times 1.125 = 4.871$ years
 $\Rightarrow \quad \mu = 2001 \quad \overline{z} \quad 5 \quad y_{c} \quad ars \quad (95\% \ c. T.)$

Summary

- 1. Principle and meaning of confidence intervals
- 2. Confidence intervals of the mean of a large samples (n > 40) computed theoretically
 - z distribution
- 3. Confidence intervals for more types of estimator computed using the bootstrap
- 4. Confidence intervals of the mean of a small sample (n < 40) computed theoretically
 - t distribtion