Foundations of Data Science: Hypothesis testing

THE UNIVERSITY of EDINBURGH

FOUNDATIONS OF DATA SCIENCE

Today

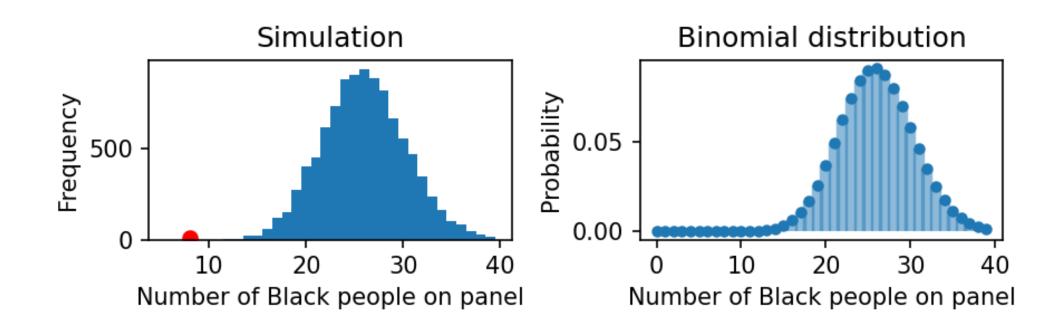
- 1. Principle of hypothesis testing
- 2. p-values
- 3. Testing for goodness of fit to a model
- 4. Issues in hypothesis testing

Foundations of Data Science: Hypothesis testing – Principle of hypothesis testing

THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS OF DATA SCIENCE

Inferential statistics tasks: Hypothesis testing

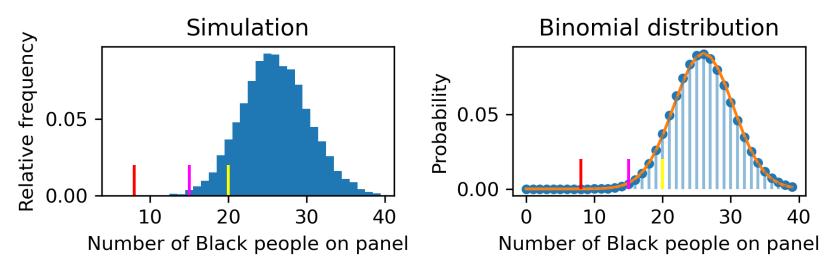

Yes/no questions: E.g. 1: "Is Chocolate good for you"

E.g. 2: Is a coin biased?

E.g. 3: Swain versus Alabama (1965). Is this jury selection procedure biased?

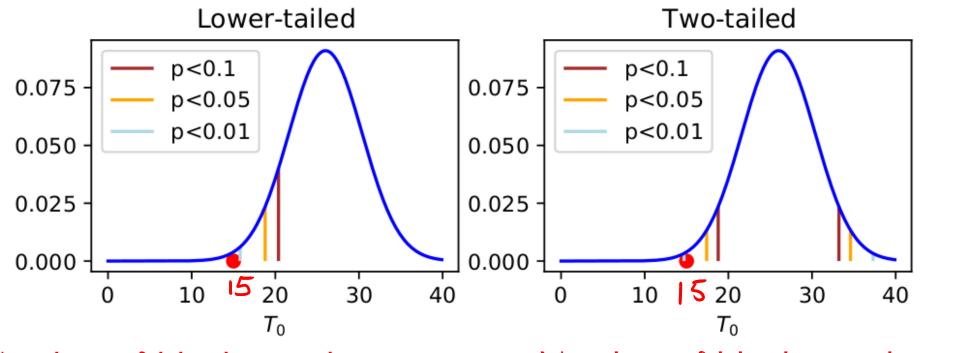
Population of Alabama 2690 Black 74% Non-Jury panel of selection : 001 8 Black and 92 Non-black black

Swain versus Alabama simulation results



Method of hypothesis testing

Test procedure


- 1. Test statistic: e.g. number of black people on a jury panel to = & (observed)
- 2. Distribution of the test statistic under H_{\bullet}

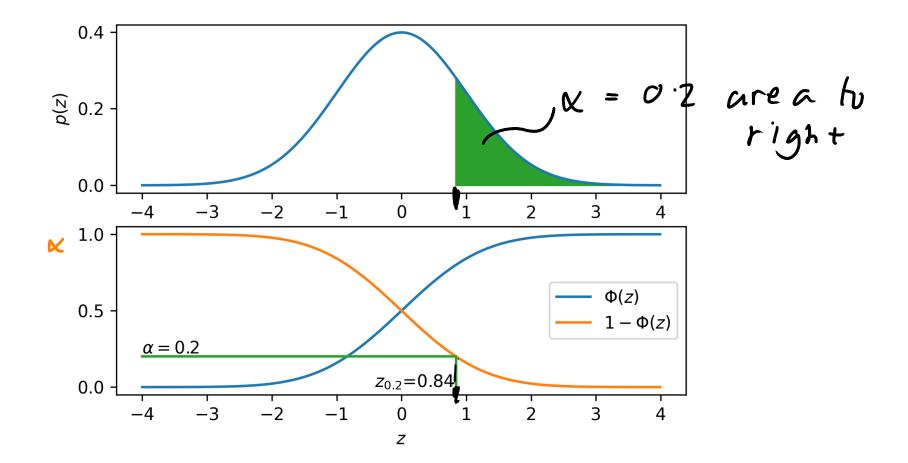
To - random variable

3. (a) Rejection region(b) Return a p-value

Rejection regions

Number of black people is below

the number expected by chance

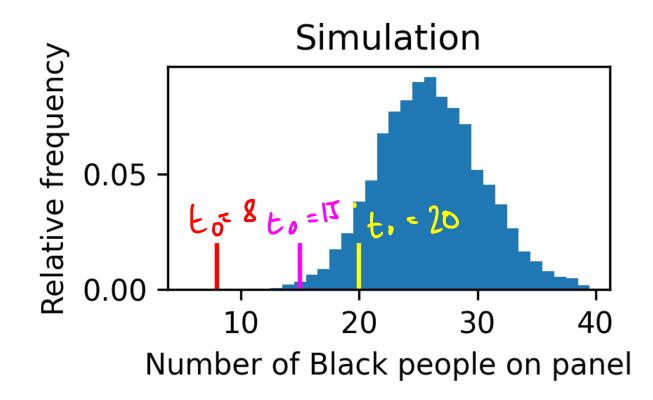

Number of black people is different from the number expected by chance

Normal approximation to the binomial distribution

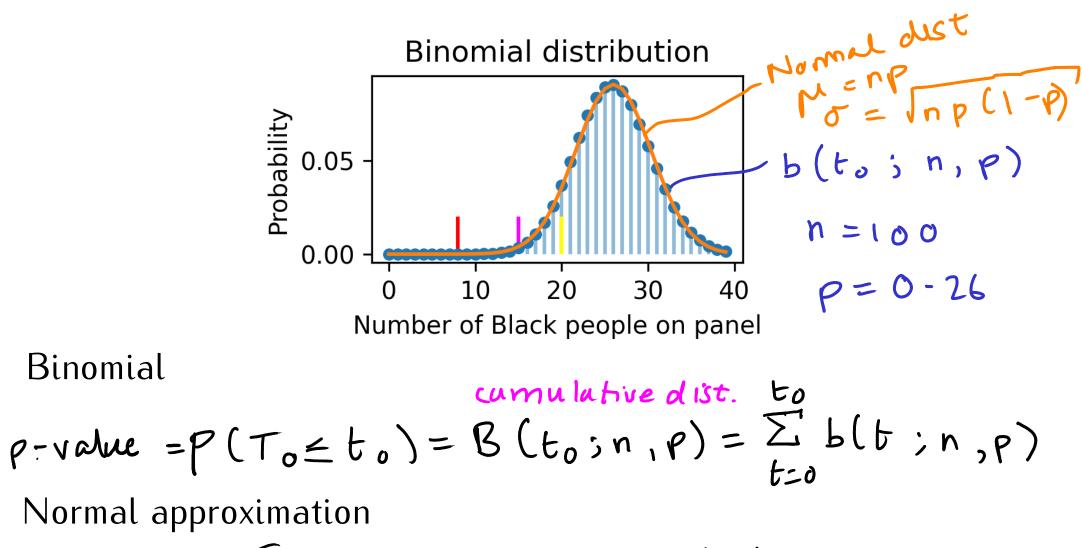
n lurge => binomial dist is approx normal with

$$\mu = np$$
 and $\sigma^2 = np(1-p) = 100 \times 0.26 \times (1 - 0.26)$
=> $\overline{Z} = T_0 - \mu$ has a \overline{z} -distribution
190 rejection region has 99% of weight to the right =>
At boundary of 1% rijection region
 $\overline{Z} = \overline{z}_{0.99} = \overline{T_0 - \mu} => \overline{T_0} = \mu + \sigma \overline{z}_{0.99}$

z-critical values


Aspects of hypothesis testing

1. Decide whether a hypothesis or model is compatible with data from observaitional studies or randomised experiments


2. Investigate mechanisms specific to data

Foundations of Data Science: Hypothesis testing – p-values

Principle of p-values

Determining p-values from probability dists

$$p-value = \overline{\Phi}(t_0 - \mu)$$
 where $\overline{\Phi}(z)$ cumulative dist
sunction of z-distribution

P-values computed by various methods

t_0	Simulation	Binomial	Normal
8	0	4.73e-06	2.03e-05
15	0.0067	0.0061	0.0061
20	0.1020	0.1030	0.0857

Definition of p-value

The *p*-value is the probability, calculated assuming the null hypothesis is true, of obtaining a value of the test statistic at least as contradictory to H_0 as the value calculated from the available sample. (*Modern Mathematical Statistics with Applications*, p. 456)

THE AMERICAN STATISTICIAN 2016, VOL. 70, NO. 2, 129–133 http://dx.doi.org/10.1080/00031305.2016.1154108

EDITORIAL

The ASA's Statement on p-Values: Context, Process, and Purpose

What p-values are

P-values can indicate how incompatible the data are with a specified statistical model...

The smaller the *p*-value, the greater the statistical incompatibility of the data with the null hypothesis, if the underlying assumptions used to calculate the *p*-value hold. This incompatibility can be interpreted as casting doubt on or providing evidence against the null hypothesis or the underlying assumptions. (ASA Statement on Statistical Significance and *P*-values)

Question

In the hypothetical case of 20 black people on the jury, which has a p-value of 0.10, would the null hypothesis be true?

Why?

What p-values are not

P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.

Researchers often wish to turn a *p*-value into a statement about the truth of a null hypothesis, or about the probability that random chance produced the observed data. The *p*-value is neither. It is a statement about data in relation to a specified hypothetical explanation, and is not a statement about the explanation itself. (ASA Statement on Statistical Significance and *P*-values)

"Statistical significance"

$$p < 0.05 \Rightarrow$$
 "statistically significant"
* significant at the $p < 0.06$ level
** " $p < 0.01$ "
*** " $p < 0.01$ "

Statistical significance

In February 2014, George Cobb, Professor Emeritus of Mathematics and Statistics at Mount Holyoke College, posed these questions to an ASA discussion forum:

- Q: Why do so many colleges and grad schools teach p = 0.05?
- A: Because that's still what the scientific community and journal editors use.
- Q: Why do so many people still use p = 0.05?
- A: Because that's what they were taught in college or grad school.

Confidence intervals and p-values

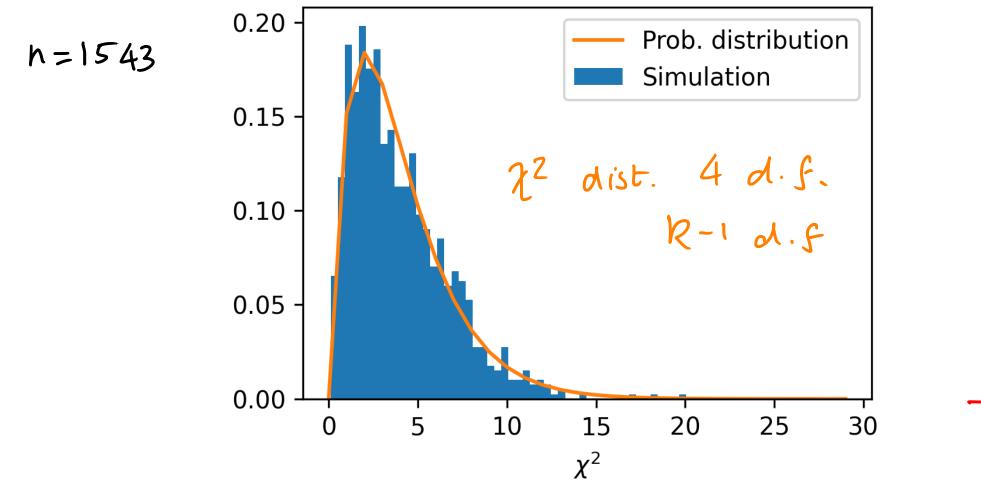
Dep.	Variable:		Grad	е	R-squ	ared:	0.289						
	Model:		OLS	S Ad	Adj. R-squar		0.251						
	Method:	Leas	t Square	s	F-stat	tistic:	7.622						
	Date:	Wed, 26	Oct 202	2 Prot	Prob (F-statistic)		3.30e-05						
	Time:		09:42:4	7 Lo	Log-Likelih		-294.31						
No. Obser	vations:		8	0	A		598.6	و المحمد					
Df Re	Df Residuals:		7	5		BIC:	610.5		90 99 10 10 10 10 10 10 10 10 10 10 10 10 10				
D)f Model:			4									
Covarian	ce Type:	nonrobust											
[٦	╴╶╴╷ _{┍╸╩┥╴┙} ╵╩╷╴╝└╶ <mark>┊╺</mark> ╸╷╴╵ <mark>╘╕╶╼┛</mark> ┻┩╎	•••				
	coef	std err	t	P> t	[0.025	0.975]	1						
Intercept	36.1215	10.752	3.360	0.001	14.703	57.540	1	⁵ 60 - 60 - 70 - 70 - 70 - 70 - 70 - 70 -					
Algebra	0.9610	0.264	3.640	0.000	0.435	1.487	·	L 20 30 20 30 20 30 50 10050 Algebra ACTM ACTNS HSRANK	0 100 Grade				
ACTM	0.2718	0.454	0.599	0.551	-0.632	1.175	j -	2 ⁽¹⁾ x ⁽²⁾ >(⁽³⁾ >(⁽⁴⁾)					
ACTNS	0.2161	0.313	0.690	0.492	-0.408	0.840	1		J				
HSRANK	0.1353	0.104	1.306	0.196	-0.071	0.342	2						
[Edge and Friedberg (1984	4)				

Foundations of Data Science: Hypothesis testing – Testing for goodness-of-fit

Multiple categories

American Civil Liberties Union investigation into jury selection in Alameda County, CA

	Caucasian	Black/AA	Hispanic	Asian/PI	Other	Total
Population %	54	18	12	15	1	100
Observed panel numbers	780	117	114	384	58	1453
Expected panel numbers	784.62	261.54	174.36	217.95	14.53	1453.00
(Observed—Expected) ² Expected	0.03	79.88	20.90	126.51	130.05	357.36


1. Test statistic

$$k - groups$$

 $p_i - population proportion in the ith group$
 $n_i - observed number in ith group$
 $n_i - total size of population $n = \frac{z}{2}$ in n_i
 $n_{p_i} - expected number in each group.$
 $\chi^2 = \frac{z}{2}$, $\frac{(n_i - np_i)^2}{np_i}$
 $r_{p_i} = 100$ $n_i = 5$
 $n_{p_i} = 10$ $n_i = 5$
 $r_{p_i} = 10$ $r_{p_i} = 5$$

2. Ho formulated as a statistical model

Draw
$$n_1$$
, ..., n_k from Multinomial distribution
 $p(n_1, ..., n_k) = n! P_1^{n_1} \cdot ... \cdot P_k^{n_k}$
 $(n_1!) \cdots (n_k!)$

but constrained so that
$$\sum_{i=1}^{k} n_i = n$$

=> k-1 degrees of freedom.

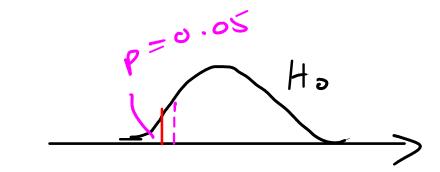
r 20

2-way contingency tables

~	Female	Male	Total		Population 1	Population 2
Depressed	30	12	42	Category 1	n_{11}	n_{12}
Not depressed	2048	1663	3711	Category 2	n_{21}	n_{22}
Total	2078	1675	3753	Total	$n_{\bullet 1}$	$n_{\bullet 2}$

Multiway contingency tables

J=2

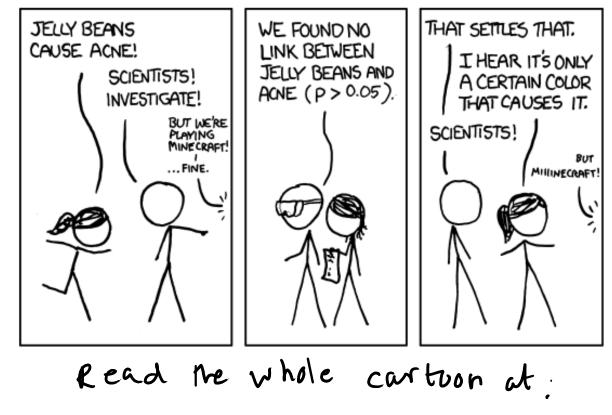

		\sim	$\overline{}$							
		Female	Male	Total		Рори	lation 1	Popul	ation 2	Total
7-15	Depressed	30	12	42	Cate	gory 1	n_{11}		n_{12}	$n_{1\bullet}$
II	Not depressed	2048	1663	3711	Cate	egory 2	n_{21}		n_{22}	$n_{2\bullet}$
	Total	2078	1675	3753	Tota	1	$n_{\bullet 1}$		$n_{\bullet 2}$	$n_{\bullet\bullet}$
		Female	Mal	e			Populat	tion 1	Populat	tion 2
	Depressed	23.25	18.7	5		Category 1		\hat{e}_{11}		\hat{e}_{12}
	Not depressed	2054.75	1656.2	5		Category 2		\hat{e}_{21}		\hat{e}_{22}

$$\mathcal{I}^{2} = \sum_{i=1}^{1} \left(\begin{array}{c} \text{Observed-Expected} \end{array}\right)^{2} = \sum_{i=1}^{T} \sum_{j=1}^{r} \left(\begin{array}{c} \text{ni}_{j} - \hat{e}_{ij} \end{array}\right)^{2} \\ = 4 \cdot 433 \\ \text{# d.f} = (I - I) (J - I) + I = I \end{array}$$

p = 0.035

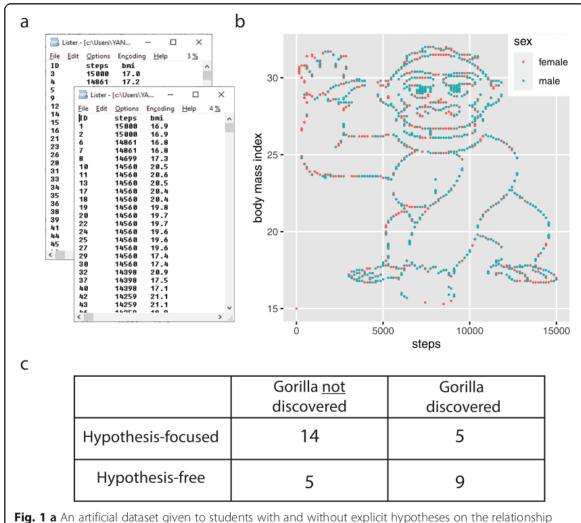
Foundations of Data Science: Hypothesis testing – Issues in hypothesis testing

Type I and Type II Errors



"Cherry-picking", "Data dredging", "p-value hacking"

Proper inference requires full reporting and transparency.


P-values and related analyses should not be reported selectively. Conducting <u>multiple</u> analyses of the data and reporting only those with certain *p*-values (typically those passing a significance threshold) renders the reported *p*-values essentially uninterpretable. Cherry-picking promising findings, also known by such terms as data dredging, significance chasing, significance questing, selective inference, and "p-hacking," leads to a spurious excess of statistically significant results in the published literature and should be vigorously avoided. . . (*ASA Statement on Statistical Significance and P-values*)

Multiple testing

https://www.explainxkcd.com/wiki/index.php/882:_Significant

"A hypothesis is a liability"

Fig. 1 a An artificial dataset given to students with and without explicit hypotheses on the relationship between BMI and the steps taken on a particular day, for men and women. **b** A plot of the dataset. **c** The contingency table for students in the two groups ("hypothesis-focused," "hypothesis-free") that discovered the gorilla or not [6]

Summary

- Principle of Hypothesis testing

 (a) Rejection method
 (b) p-values
- 2. Hypothesis testing applied to 3 problems involving testing if observed numbers are consistent with expected proportions
 - Many other uses
- 3. Limitations of hypothesis testing and p-values