Foundations of Data Science: Logistic regression

THE UNIVERSITY of EDINBURGH Informatics

Overview

- Principle of Logistic Regression
- Interpretation of Logistic Regression coefficients
- Multiple Logistic Regression
- Logistic Regression as a classifier
- (Maximum likelihood estimation of Logistic regression coefficients)

Foundations of Data Science: Logistic regression -Principle of logistic regression

Supervised classification

Binary (or dichotomous) response variable: Credit

Approved Not approved

Classification task on one continuous variable

- (a) Draw a Linear regression line through this
- (b) Convert the linear regression prediction to a predicted class label (0/1)
- (d) where is the decision boundary?

 (d) How many classification errors are there?

Logistic function

Application to continuous variable in credit example

Binary variables: odds and odds ratios

	Approved	Not approved	Approval odds
Employed			
0	0.25	0.75	0.34
1	0.71	0.29	2.42

odds (Sucress) =
$$\frac{P(Sucress)}{P(failure)} = \frac{P(Sucress)}{1 - P(Sucress)}$$

Odds ratio or
$$(x)$$
 - Odds (Success) $x = True$)

Odds (Success) $x = False$)

1 - P(Success)

Foundations of Data Science:
Logistic regression Interpretation of logistic regression
coefficients

Interpretation of $\hat{\beta}_{\epsilon}$

$$f(\hat{s}_0) = f(-1.176)$$

= 6.236

Log odds

P(Success)

P(Failure)

- P(Success) 1-p

Logit scale

Success
$$P(Y=1|x) = f(\beta_0+\beta_1x) = \frac{1}{1+e^{-\beta_0-\beta_1x}}$$

Failure
$$P(Y=0|x) = 1 - f(B_0+\beta_1x) = 1 - \frac{1}{1+e^{-\beta_0-\beta_1x}}$$

$$=\frac{e^{-\beta_0-\beta_1x}}{1+e^{-\beta_0-\beta_1x}}$$

Odds
$$P[Y=1|x] = \frac{1}{e^{-\beta_0} - \beta_{12}} = e^{\beta_0 + \beta_{12}}$$

Logodds In
$$P(Y=1|x) = B_0 + B_1 x = logit (P(Y=1|x))$$

$$P(Y=0|x)$$

Interpretation of
$$\hat{\beta}_i$$

Odds (>c) = $e^{\hat{\beta}_0} + \hat{\beta}_i x$
= $e^{\hat{\beta}_0} e^{\hat{\beta}_i x}$
= $e^{\hat{\beta}_0} e^{\hat{\beta}_i x}$
= $e^{\hat{\beta}_0} e^{\hat{\beta}_i x}$
 $x = \{0, 1\}$ OR(x) = Odds(1)
 $x = \{0, 1\}$ OR(x) = $e^{\hat{\beta}_i}$
 $x = \{0, 1\}$ OR(x) = $e^{\hat{\beta}_i}$
 $x = \{0, 1\}$ OR(x) = $e^{\hat{\beta}_i}$

(redit e.y. OR (Age) = e0.03 ~ 1.03

Foundations of Data Science: Logistic regression -Multiple logistic regression

Principle of multiple logistic regression

Predictor variables
$$x^{(1)}$$
: Age $x^{(2)}$: Employ ment $= \{0, 1\}$

$$P(Y=||x^{(1)}|, x^{(2)}, ...)$$

$$= f(\beta_0 + \beta_1 x^{(1)} + \beta_2 x^{(2)} + ...)$$

Multiple logistic regression applied to the credit example

	Variable	Coefficient	Odds or OR
\hat{eta}_0	Intercept	-1.969	0.140 £ odds
$\hat{oldsymbol{eta}}_1$	Age	0.029	1.030 tor
$\hat{oldsymbol{eta}}_2$	Employed	1.881	6.562 to 08
		109 odd 109its	etê
		logits	

Bootstrap confidence intervals

Does age affect credit approval?

Ho: age does not affect credit approval =>eB' =

Ha: "" affect credit approval in some way.

Discussion question

Can you think of any problems in the reasoning that we've used to suggest age and credit approval are related?

Foundations of Data Science: Logistic regression -The logistic regression classifier

Converting logistic regression to a classifier

- Fit logistic regression model
- Set mreshold c in terms of log odds and apply to precticled log odds:

$$\hat{\beta}_{0} + \hat{\beta}_{1} \chi^{(1)} + \hat{\beta}_{2} \chi^{(2)} + \dots > c \implies \hat{y} = 1$$

$$\hat{\beta}_{0} + \hat{\beta}_{1} \chi^{(1)} + \hat{\beta}_{2} \chi^{(2)} + \dots < c \implies \hat{y} = 0$$

$$C = 0 = 7 \text{ odds of } 1 \Rightarrow P = 0.5$$

Decision boundary

$$\beta_{0} + \beta_{1} \chi^{(1)} + \beta_{2} \chi^{(2)} + \dots \Rightarrow c \Rightarrow \hat{y} = 1$$
 $\beta_{0} + \beta_{1} \chi^{(1)} + \beta_{2} \chi^{(2)} + \dots \leq c \Rightarrow \hat{y} = 0$

Ethics: logistic regression can be transparent

Credit scoring system:

- If you are in employment you score 1.625, if not you score 0
- Multiply your age by 0.029 and add the result to your score
- Round your income to the nearest 1000.
 Multiply the number of zeros in this figure by 0.320 and add the result to your score
- If you scored more than 2.246, your credit will be approved
- Cf. "Promote Values of Transparency, Autonomy and Trustworthiness" (Vallor, 2018)

Logistic regression versus k-NN

Decision boundary, flexibility/over-fitting, transparency

Standardised input variables

Summary

- Interpret and in terms of log odds
- Extend logistic regression to multiple variables
- Use logistic regression as a classifier
- Not covered (yet): derivation of logistic regression from principle of max likelihood

Foundations of Data Science:
Logistic regression Maximum likelihood estimation of
logistic regression coefficients

Principle of Maximum Likelihood

$$y = \beta_0 + \beta_1 x$$

$$y = \beta_0 + \beta_0 x$$

$$y = \beta_0 +$$

Adjust coefficients so as to maximise the likelihood of the data.

Expression for max. likelihood Optimise W.r. t Bo, B,,...

Likelihood of one point

$$P(\gamma_{i}=1 \mid \times_{i}=x_{i}) = f(\beta_{0}+\beta_{1}x_{i}) \qquad D$$

$$P(\gamma_{i}=0 \mid \times_{i}=x_{i}) = 1-f(\beta_{0}+\beta_{1}x_{i}) \qquad D$$

$$P(\gamma_{i}=y_{i}\mid \times_{i}=x_{i}) = 1-f(\beta_{0}+\beta_{1}x_{i}) + (1-y_{i})(1-f(\beta_{0}+\beta_{1}x_{i})) \qquad D$$

Likelihood of data given model

Assumption: responses are independent, given value of predictor variables

$$P(Y=y \mid X=x) = P(Y=y, \mid X=x_1)P(Y=y_2 \mid X=x_2) - \frac{n}{1-1}$$

$$= \frac{n}{1-1}P(Y=y, \mid X=x_1)$$

$$= \prod_{i=1}^{n} \{y_i f(\beta_0 + \beta_1 x_{ii}) + (1-y_i)(1-f(\beta_0 + \beta_1 x_{ii}))\}$$

$$= \prod_{i=1}^{n} \{y_i f(\beta_0 + \beta_1 x_{ii}) + (1-y_i)(1-f(\beta_0 + \beta_1 x_{ii}))\}$$

Likelihood of data given model

$$\ln ab = \ln a + \ln b$$

$$\ln \frac{n}{1 - 1} = \frac{n}{1 - 1} \ln ai$$

log lixelihood: $P(\frac{1}{2}y|X=x) =$

$$\frac{n}{2!}$$
 en $\{y_i f(\beta_0 + \beta_1) x_i\} + (1-y_i)(1-f(\beta_0 + \beta_1) x_i)\}$

You can help fight COVID-19 by aiding research

https://covid.joinzoe.com/