Foundations of Data Science:
Regression and inference -

From the maximum likelihood principle
to linear regression
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Overview

Today

1. The maximum likelihood principle

2. Application of maximum likelihood principle
to a simple example

3. Application of maximum likelihood principle
to linear regression

Wednesday

- Max likelithood with non-normal distributions
- Generalised linear regresion



Foundations of Data Science:
Regression and inference -
The maximum likelthood principle



Intuition for maximum likelihood principle
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Intuition for maximum likelihood principle
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Definition of the maximum likelihood principle

For a set of observed data and

a given statistical model

the principle of maximum likelihood states that

the parameters of the model are adjusted so as to maximise
the likelihood that the model generated the observed data.
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Foundations of Data Science:
Regression and inference -
Application of the maximum likelihood
principle to a simple example



Application to 1-variable example

1. Assume samples are drawn independently
2. Assume each sample is drawn from an normal distribution
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More compact notation...
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Likelihood as a function of parameters
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Log-likelihood as a function of parameters
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Log-likelihood equations: products to sums
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The beauty of logs and sums

- Sum of logs is easy to represent within limits of floating
point arithmetic

- Log likelthood function is smoother than likelihood function

- Sums are easy to differentiate; products are not



The log of the normal distribution
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Final expression for log likelihood
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Foundations of Data Science:
Regression and inference -
Application of the maximum likelihood
principle to linear regression



Application of max likelihood to linear regression
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Relationship to ordinary least squares
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Estimates of coefficients
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Weight (g)

Data from Wauters and Dhondt 1989

Log likelihood
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Bootstrap inference of coefficients

1.0 1

0.8 A1

0.6

0.4

0.2 A

0.0 -

‘ 2i5 250 255
Peter Trimming, Wikimedia Length (mm) Slope

Commons, CC BY 2.0

—100 A
—200 A
—300 A
—400 A

Intercept

—500 A
—600 -

—700 A

N
(OV)
S

-600 —-400 -200 0
Intercept Slope



(Log) Likelithood function Bootstrap samples
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Overview

1. Maximum likelihood principle
- What model was most likely to have generated the data

2. Maximum likelihood principle applied to simple example
- Log likelthood turns out to be useful
- Gives rise to familiar estimates for mean and variance

3. Maximum likelthood principle applied to linear regression
- Turns out to give ordinary least squares
- Link with coefficient uncertainty and the bootstrap
estimates of parameter uncertainty
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