Foundations of Data Science:
Regression and inference -

From the maximum likelihood principle
to linear regression
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We want to investigate the relationship
between the number of bikes hired in a day
and the temperature on that day

Is there a problem with using ordinary least
squares linear regression to do this?
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Overview

Today

1. The maximum likelihood principle

2. Application of maximum likelihood principle
to a simple example

3. Application of maximum likelihood principle
to linear regression

Wednesday

- Max likelithood with non-normal distributions
- Generalised linear regresion



Foundations of Data Science:
Regression and inference -
The maximum likelihood principle



Intuition for maximum likelihood principle



Intuition for maximum likelihood principle
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Definition of the maximum likelihood principle

For a set of observed data and

a given statistical model

the principle of maximum likelihood states that

the parameters of the model are adjusted so as to maximise
the likelihood that the model generated the observed data.




Foundations of Data Science:
Regression and inference -
Application of the maximum likelihood
principle to a simple example



Application to 1-variable example

1. Assume samples are drawn independently
2. Assume each sample is drawn from an normal distribution



More compact notation...



Likeli
thood
a
s a function of pa
rameters

Data.
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Log-likelihood as a function of parameters
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Log-likelihood equations: products to sums



The beauty of logs and sums

- Sum of logs is easy to represent within limits of floating
point arithmetic

- Log likelthood function is smoother than likelihood function

- Sums are easy to differentiate; products are not



The log of the normal distribution



Final expression for log likelihood
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Foundations of Data Science:
Regression and inference -
Application of the maximum likelihood
principle to linear regression



Application of max likelihood to linear regression



Relationship to ordinary least squares
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Estimates of coefficients
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Weight (g)

Log likelihood
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Peter Trimming, Wikimedia

Commons, CC BY 2.0
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Bootstrap inference of coefficients

Peter Trimming, Wikimedia
Commons, CC BY 20
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(Log) Likelithood function Bootstrap samples
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Overview

1. Maximum likelihood principle
- What model was most likely to have generated the data

2. Maximum likelihood principle applied to simple example
- Log likelthood turns out to be useful
- Gives rise to familiar estimates for mean and variance

3. Maximum likelthood principle applied to linear regression
- Turns out to give ordinary least squares
- Link with coefficient uncertainty and the bootstrap
estimates of parameter uncertainty
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