
Software engineering for 
data science

Foundations of Data Science (INF2-FDS)

Anna Hadjitofi

Semester 2, Week 6

26th Feb 2024



Where does software engineering 
fit in with data science?



Where does software engineering fit in with data science? Reproducibility

This illustration is created by Scriberia with The Turing Way community. Used under a CC-BY 4.0 
licence. DOI: 10.5281/zenodo.3332807

Efficient & 
maintainable code

Packaging / 
sharing your code

Modularity

Readability

Robust (testing, 
errors, logging)



Where does software engineering fit in with data science? Model design / deployment

Meeting latency requirements
e.g. a video game company using a 
model for match-making must have 

near instantaneous predictions.

Reduce operational costs 
If prediction traffic varies throughout time 
(e.g. food delivery service around dinner), 
the solution should automatically scale.

Security
Access to models and data 

should protected.

Transition from training environments
Online predictions require real-time data 

transformations.

Continuous redeployment & monitoring
Automated tests can verify prediction 

metrics have not drifted out of bounds.



The analytics - engineering spectrum https://mattsosna.com/DS-transition-1

By Matt Sosna 

“Data scientist” can be 
a catch-all phrase for a 
wide range of work.



The analytics - engineering spectrum https://mattsosna.com/DS-transition-1

Data scientist job listing on Tesla



The analytics - engineering spectrum https://mattsosna.com/DS-transition-1

Data scientist job listing for Yelp



Upcoming: Reproducible research / data 
science workflow

Version control

● Code
● Data

Connecting research to
applications, helping create
usable and sustainable tools,
practices and systems
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Barriers to reproducibility



What is reproducibility in research? 

Illustration by The Ludic Group LLP from Kirstie Whitaker’s 
keynote presentation at Scientific Data in 2017. Used under a 
CC-BY 4.0 license. DOI: 10.6084/m9.figshare.5577340.v1.

The Turing Way Community. (2021, November 10). The Turing Way: A handbook for reproducible, ethical 
and collaborative research. Zenodo. http://doi.org/10.5281/zenodo.3233853

https://doi.org/10.6084/m9.figshare.5577340.v1
http://doi.org/10.5281/zenodo.3233853


Caveats: Being reproducible doesn’t mean the answer is right

Reproducibility is necessary but not sufficient 
for high quality research.



Barriers to reproducible research (1)

Data not shared / lost / inaccessible format

Missing / buggy code

Code runs but gives different results

Library changes



Barriers to reproducible research (2)
*Illustrations by The Ludic Group LLP from Kirstie Whitaker’s 
keynote presentation at Scientific Data in 2017. Used under a 
CC-BY 4.0 license. DOI: 10.6084/m9.figshare.5577340.v1.

Putting your code and data online 
can be revealing and intimidating*

Making an analysis reproducible takes time, 
particularly at the start of the project. But, 

you’re helping “future you” and collaborators 
reuse the work or make changes*

https://doi.org/10.6084/m9.figshare.5577340.v1


Steps towards reproducible 
data science



Clean code



What is clean code? Quotes from Martin (2009)

Recommended reading: 
Martin, R. C. (2009). Clean 
code: a handbook of agile 
software craftsmanship. 
Pearson Education.



Clean code: simple example

● Variable names should be 
explanatory and descriptive

● Use standard formatter 
(Python’s Black)

● Follow PEP8 conventions (case 
convention, underscore use etc)

vs



Clean code principles



Documentation



Documentation

“Incomplete or confusing documentation” is the most common problem 
encountered when developing open-source software - GitHub 2017 survey.

https://opensourcesurvey.org/2017

https://opensourcesurvey.org/2017


Documentation

Documentation tells us what the project does, how it works, how to use it, 
issues encountered, how to contribute, details of the datasets.

LICENSE: Specifies how/if the project can be used by others.

README: Explains why the project is useful and how to get started, required 
libraries and their versions, and welcomes new community members.

CONTRIBUTING: Contributing docs explains what types of contributions are 
needed and how the process works.

CODE_OF_CONDUCT: Sets ground rules for participants’ behaviour and helps to 
facilitate a friendly, welcoming environment.

Other documentation: e.g. tutorials, walkthroughs, or governance policies.



Documentation

Documentation tells us what the project does, how it works, how to use it, 
issues encountered, how to contribute, details of the datasets.



Modular code



Modular code

Writing modular code involves breaking down large tasks into smaller, 
self-contained functions.

● Minimise the duplication of functions, classes, and modules

● Single responsibility principle: a class/function should have only one 
responsibility

● Modules allow code to be reused by encapsulating them into files that 
can be imported into other files



Example starter project structure

This is a just a starter 
guide, keep in mind that 
every project is unique.



Optimised code



Optimising code in data science: pandas.apply vs iterrows

Know which data 
structures and methods 
are faster



Optimising code in data science: vectorise your functions

Vectorization is a style of programming 
that deals with entire arrays instead of 
individual elements. Use vector 
operations (numpy) over loops when 
possible, as it allows the use of optimal 
and pre-compiled funcs on array objects.



Optimising code in data science: multiprocessing

Multiprocessing is the ability of a 
system to support more than 
one processor at the same time.



Optimising code in data science: dtypes

When reading in a csv / json file 
pandas infers the column types 
and defaults to the largest data 
type (int64, float64, object).

airbnb listing data loaded using pandas:

availability_365  has only 365 possible 
values (the number of days each year a 
listing is available), so it can be downcasted 
to an int16 without losing info



Optimising code in data science: dtypes

Use downcast arg of 
pd.to_numeric to 
downcast the data to the 
smallest dtype possible.

airbnb listing data loaded using pandas:



Logging



Logging

Monitor the flow that our program is goes through.

Logging vs print statements:

● Logging allows you to add context (time, location, level)
● Send logs to different places & formats
● Control behaviour via configs



Logging (Python)

Use appropriate 
logging level:

Logging to standard output stream:



Logging (Python)

Use appropriate 
logging level:

Logging to a file:



Testing



Testing

https://www.nytimes.com/1986/06/21/us/fatal-radiation-d
ose-in-therapy-attributed-to-computer-mistake.html



Testing

● Unit testing: aims to check if a part of code operates in the intended way. 

● Integration testing: verifies how different components interact and function 
together smoothly as a whole

● Data testing: validates the quality, integrity, and consistency of data used in 
models and analyses.

● Model testing: evaluates the performance and generalisability of models on 
unseen (or in-coming) data.



Testing

New data incoming:



Testing

Corresponding test case:

Note that any numbers 
with decimal points 
would still fail this test!

Fixed code:



Refactoring



When to refactor (data science / ML projects)?

Model drift
If performance drops, it may call 
for a retraining or refactoring to 
better reflect any changes to the 

environment.

New maintainer
When taking on a project someone else 
built or vice versa, evaluating whether a 
refactor would be of value (and doing 

one) can be helpful for a handover.

Change of source data
Changes in features, volume of data 

or how it’s measured.

Scaling
Shift in requirements of the pipeline 

(users, new data).

Moving from R&D to production
Ensure model integrates with pipeline, & 

improve performance for scale.



Refactoring

Improve the design, structure, and 
implementation of the code while 
preserving its functionality.

In general, prerequisites of refactoring:
● Doesn’t change external behavior
● Changes code’s internal structure
● Is done after the code fulfills the 

requirements

Different methods for refactoring: 
red-green refactoring, extract method, 
simplifying methods, composing 
method, and abstraction.

This illustration is created by Scriberia with The Turing Way community. 
Used under a CC-BY 4.0 licence. DOI: 10.5281/zenodo.3332807



Version control



Code management



Source code version control

Tracks & manages changes in a code base.

This illustration is created by Scriberia with The Turing Way 
community. Used under a CC-BY 4.0 licence. DOI: 

10.5281/zenodo.3332807

Insights from 
exploratory analysis

Scalable models that 
drive development of 

services

Artefacts e.g.
file dependencies, software 
versions, datasets, models, 

metrics and parameters



Git

Linus Torvald’s first 
commit developing git

For info on the concepts behind Git, see tutorials at:
https://github.com/infpals and 
https://homepages.inf.ed.ac.uk/s1334591

https://github.com/infpals
https://homepages.inf.ed.ac.uk/s1334591


Notebooks vs programs

Jupyter notebooks are written in JSON and generate files that may contain 
metadata, source code, formatted text, and rich media.

Diff example of notebooks:

Primitive line-based diff 
and merge tools work 
best on plain text.



Notebooks vs programs

Also, for large notebooks with 
many image outputs:

● Clear output manually

● Convert to HTML

● Convert to Python (script)

Use tooling for diffing & merging Jupyter notebooks, 
e.g. Git integrations in VSCode or nbdime

Rmarkdown files include code and 
prose (results produced by code 
are processed / typeset to produce 
an additional .pdf or .html file)

https://nbdime.readthedocs.io/en/latest/
https://rmarkdown.rstudio.com/lesson-10.html


Data management



Data version control

Version control systems deal well with small text files (kb instead of mb, and 
definitely not gb (Wilson et al., 2017)).

Recommendations:

● Save and backup the raw data, protect with permissions and document how 
it was obtained (e.g. exact query, date of retrieval, version of database)

● Save and share a clean version of the data in open data format (csv, json, 
yaml, xml) with meaningful variable and file names, as well as metadata



Data version control

Tidy dataset:

● Every column is a variable

● Every row is an observation

● Every cell is a single value

● Ideally, unique ID for each observation

Covered in Section 2.2 of FDS lecture notes

Share data using open 
access research data 
repos: e.g. Zenodo, 
figshare, Mendeley Data

See Tidy data in R

https://opencourse.inf.ed.ac.uk/sites/default/files/2024-01/FDS-lecture-notes-2024-01-28.pdf
https://zenodo.org/
https://figshare.com/
https://data.mendeley.com/
https://r4ds.had.co.nz/tidy-data.html


Happy to take any questions.
Feel free to get in touch with future questions or any feedback 
on the session: a.hadjitofi@ed.ac.uk

https://forms.office.com/e/mWK1u5cXgT

mailto:a.hadjitofi@ed.ac.uk
https://forms.office.com/e/mWK1u5cXgT


Extra slides



Optimising code in data science: vectorise your functions

Vectorisation cannot be applied:
● Loop dependency
● Indirect memory access
● Code branching

Data types
Unlike Python lists, numpy allows 
arrays to only have a single data 

type and stores the data internally in 
a contiguous block of memory.

Broadcasting
A feature of numpy that enables 

mathematical operations to be carried out 
between arrays of different sizes (allows 

vectorising array operations so that looping 
occurs in C instead of Python).



Refactoring (methods)

Red-green refactoring. “Test first 
approach”. Review intended 
development and write tests (red), 
implement code (green) and then 
identify weak points and refactor.

Simplifying methods. Addresses complicated 
logic. Consolidate multiple conditionals that lead 
to the same result or action to a single 
expression (conditional expressions 
refactoring). Adding / removing parameters, or 
replacing parameters with explicit method and 
call (methods calls refactoring).

Abstraction. Remove repetition 
and redundancy from your code, 
e.g. creating interfaces, setting up 
new classes, hierarchy, class 
inheritances, etc.

Composing method. Long methods 
make code hard to understand and 
sometimes change. Transfer a code 
fragment from its original method 
into a newly established one 
(extraction).


