
Software engineering for
data science

Foundations of Data Science (INF2-FDS)

Anna Hadjitofi

Semester 2, Week 6

26th Feb 2024

Where does software engineering
fit in with data science?

Where does software engineering fit in with data science? Reproducibility

This illustration is created by Scriberia with The Turing Way community. Used under a CC-BY 4.0
licence. DOI: 10.5281/zenodo.3332807

Efficient &
maintainable code

Packaging /
sharing your code

Modularity

Readability

Robust (testing,
errors, logging)

Where does software engineering fit in with data science? Model design / deployment

Meeting latency requirements
e.g. a video game company using a
model for match-making must have

near instantaneous predictions.

Reduce operational costs
If prediction traffic varies throughout time
(e.g. food delivery service around dinner),
the solution should automatically scale.

Security
Access to models and data

should protected.

Transition from training environments
Online predictions require real-time data

transformations.

Continuous redeployment & monitoring
Automated tests can verify prediction

metrics have not drifted out of bounds.

The analytics - engineering spectrum https://mattsosna.com/DS-transition-1

By Matt Sosna

“Data scientist” can be
a catch-all phrase for a
wide range of work.

The analytics - engineering spectrum https://mattsosna.com/DS-transition-1

Data scientist job listing on Tesla

The analytics - engineering spectrum https://mattsosna.com/DS-transition-1

Data scientist job listing for Yelp

Upcoming: Reproducible research / data
science workflow

Version control

● Code
● Data

Connecting research to
applications, helping create
usable and sustainable tools,
practices and systems

With thanks to… Books

The Turing Way Community. (2021, November 10). The Turing Way: A
handbook for reproducible, ethical and collaborative research. Zenodo.
http://doi.org/10.5281/zenodo.3233853.

Martin, R. C. (2009). Clean code: a handbook of agile software
craftsmanship. Pearson Education.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K.
(2017). Good enough practices in scientific computing. PLoS computational
biology, 13(6), e1005510.

Websites / blogs:

W.D., “Scikit-learn's Defaults are Wrong”. 2019.
https://ryxcommar.com/2019/08/30/scikit-learns-defaults-are-wrong

“Open Source Survey”. 2017. https://opensourcesurvey.org/2017

Sosna, M., “How to enter data science”. 2020.
https://mattsosna.com/DS-transition-1

Van der Gugten, R., “Advanced Pandas: Optimize speed and memory”. 2019.
https://medium.com/bigdatarepublic/advanced-pandas-optimize-speed-and-
memory-a654b53be6c2

Kirmer, S., “Refactoring Machine Learning Projects”. 2021.
https://towardsdatascience.com/refactoring-machine-learning-projects-f566
607a7b6f

https://the-turing-way.netlify.app/welcome
https://ryxcommar.com/2019/08/30/scikit-learns-defaults-are-wrong
https://opensourcesurvey.org/2017
https://mattsosna.com/DS-transition-1
https://medium.com/bigdatarepublic/advanced-pandas-optimize-speed-and-memory-a654b53be6c2
https://medium.com/bigdatarepublic/advanced-pandas-optimize-speed-and-memory-a654b53be6c2
https://towardsdatascience.com/refactoring-machine-learning-projects-f566607a7b6f
https://towardsdatascience.com/refactoring-machine-learning-projects-f566607a7b6f

Barriers to reproducibility

What is reproducibility in research?

Illustration by The Ludic Group LLP from Kirstie Whitaker’s
keynote presentation at Scientific Data in 2017. Used under a
CC-BY 4.0 license. DOI: 10.6084/m9.figshare.5577340.v1.

The Turing Way Community. (2021, November 10). The Turing Way: A handbook for reproducible, ethical
and collaborative research. Zenodo. http://doi.org/10.5281/zenodo.3233853

https://doi.org/10.6084/m9.figshare.5577340.v1
http://doi.org/10.5281/zenodo.3233853

Caveats: Being reproducible doesn’t mean the answer is right

Reproducibility is necessary but not sufficient
for high quality research.

Barriers to reproducible research (1)

Data not shared / lost / inaccessible format

Missing / buggy code

Code runs but gives different results

Library changes

Barriers to reproducible research (2)
*Illustrations by The Ludic Group LLP from Kirstie Whitaker’s
keynote presentation at Scientific Data in 2017. Used under a
CC-BY 4.0 license. DOI: 10.6084/m9.figshare.5577340.v1.

Putting your code and data online
can be revealing and intimidating*

Making an analysis reproducible takes time,
particularly at the start of the project. But,

you’re helping “future you” and collaborators
reuse the work or make changes*

https://doi.org/10.6084/m9.figshare.5577340.v1

Steps towards reproducible
data science

Clean code

What is clean code? Quotes from Martin (2009)

Recommended reading:
Martin, R. C. (2009). Clean
code: a handbook of agile
software craftsmanship.
Pearson Education.

Clean code: simple example

● Variable names should be
explanatory and descriptive

● Use standard formatter
(Python’s Black)

● Follow PEP8 conventions (case
convention, underscore use etc)

vs

Clean code principles

Documentation

Documentation

“Incomplete or confusing documentation” is the most common problem
encountered when developing open-source software - GitHub 2017 survey.

https://opensourcesurvey.org/2017

https://opensourcesurvey.org/2017

Documentation

Documentation tells us what the project does, how it works, how to use it,
issues encountered, how to contribute, details of the datasets.

LICENSE: Specifies how/if the project can be used by others.

README: Explains why the project is useful and how to get started, required
libraries and their versions, and welcomes new community members.

CONTRIBUTING: Contributing docs explains what types of contributions are
needed and how the process works.

CODE_OF_CONDUCT: Sets ground rules for participants’ behaviour and helps to
facilitate a friendly, welcoming environment.

Other documentation: e.g. tutorials, walkthroughs, or governance policies.

Documentation

Documentation tells us what the project does, how it works, how to use it,
issues encountered, how to contribute, details of the datasets.

Modular code

Modular code

Writing modular code involves breaking down large tasks into smaller,
self-contained functions.

● Minimise the duplication of functions, classes, and modules

● Single responsibility principle: a class/function should have only one
responsibility

● Modules allow code to be reused by encapsulating them into files that
can be imported into other files

Example starter project structure

This is a just a starter
guide, keep in mind that
every project is unique.

Optimised code

Optimising code in data science: pandas.apply vs iterrows

Know which data
structures and methods
are faster

Optimising code in data science: vectorise your functions

Vectorization is a style of programming
that deals with entire arrays instead of
individual elements. Use vector
operations (numpy) over loops when
possible, as it allows the use of optimal
and pre-compiled funcs on array objects.

Optimising code in data science: multiprocessing

Multiprocessing is the ability of a
system to support more than
one processor at the same time.

Optimising code in data science: dtypes

When reading in a csv / json file
pandas infers the column types
and defaults to the largest data
type (int64, float64, object).

airbnb listing data loaded using pandas:

availability_365 has only 365 possible
values (the number of days each year a
listing is available), so it can be downcasted
to an int16 without losing info

Optimising code in data science: dtypes

Use downcast arg of
pd.to_numeric to
downcast the data to the
smallest dtype possible.

airbnb listing data loaded using pandas:

Logging

Logging

Monitor the flow that our program is goes through.

Logging vs print statements:

● Logging allows you to add context (time, location, level)
● Send logs to different places & formats
● Control behaviour via configs

Logging (Python)

Use appropriate
logging level:

Logging to standard output stream:

Logging (Python)

Use appropriate
logging level:

Logging to a file:

Testing

Testing

https://www.nytimes.com/1986/06/21/us/fatal-radiation-d
ose-in-therapy-attributed-to-computer-mistake.html

Testing

● Unit testing: aims to check if a part of code operates in the intended way.

● Integration testing: verifies how different components interact and function
together smoothly as a whole

● Data testing: validates the quality, integrity, and consistency of data used in
models and analyses.

● Model testing: evaluates the performance and generalisability of models on
unseen (or in-coming) data.

Testing

New data incoming:

Testing

Corresponding test case:

Note that any numbers
with decimal points
would still fail this test!

Fixed code:

Refactoring

When to refactor (data science / ML projects)?

Model drift
If performance drops, it may call
for a retraining or refactoring to
better reflect any changes to the

environment.

New maintainer
When taking on a project someone else
built or vice versa, evaluating whether a
refactor would be of value (and doing

one) can be helpful for a handover.

Change of source data
Changes in features, volume of data

or how it’s measured.

Scaling
Shift in requirements of the pipeline

(users, new data).

Moving from R&D to production
Ensure model integrates with pipeline, &

improve performance for scale.

Refactoring

Improve the design, structure, and
implementation of the code while
preserving its functionality.

In general, prerequisites of refactoring:
● Doesn’t change external behavior
● Changes code’s internal structure
● Is done after the code fulfills the

requirements

Different methods for refactoring:
red-green refactoring, extract method,
simplifying methods, composing
method, and abstraction.

This illustration is created by Scriberia with The Turing Way community.
Used under a CC-BY 4.0 licence. DOI: 10.5281/zenodo.3332807

Version control

Code management

Source code version control

Tracks & manages changes in a code base.

This illustration is created by Scriberia with The Turing Way
community. Used under a CC-BY 4.0 licence. DOI:

10.5281/zenodo.3332807

Insights from
exploratory analysis

Scalable models that
drive development of

services

Artefacts e.g.
file dependencies, software
versions, datasets, models,

metrics and parameters

Git

Linus Torvald’s first
commit developing git

For info on the concepts behind Git, see tutorials at:
https://github.com/infpals and
https://homepages.inf.ed.ac.uk/s1334591

https://github.com/infpals
https://homepages.inf.ed.ac.uk/s1334591

Notebooks vs programs

Jupyter notebooks are written in JSON and generate files that may contain
metadata, source code, formatted text, and rich media.

Diff example of notebooks:

Primitive line-based diff
and merge tools work
best on plain text.

Notebooks vs programs

Also, for large notebooks with
many image outputs:

● Clear output manually

● Convert to HTML

● Convert to Python (script)

Use tooling for diffing & merging Jupyter notebooks,
e.g. Git integrations in VSCode or nbdime

Rmarkdown files include code and
prose (results produced by code
are processed / typeset to produce
an additional .pdf or .html file)

https://nbdime.readthedocs.io/en/latest/
https://rmarkdown.rstudio.com/lesson-10.html

Data management

Data version control

Version control systems deal well with small text files (kb instead of mb, and
definitely not gb (Wilson et al., 2017)).

Recommendations:

● Save and backup the raw data, protect with permissions and document how
it was obtained (e.g. exact query, date of retrieval, version of database)

● Save and share a clean version of the data in open data format (csv, json,
yaml, xml) with meaningful variable and file names, as well as metadata

Data version control

Tidy dataset:

● Every column is a variable

● Every row is an observation

● Every cell is a single value

● Ideally, unique ID for each observation

Covered in Section 2.2 of FDS lecture notes

Share data using open
access research data
repos: e.g. Zenodo,
figshare, Mendeley Data

See Tidy data in R

https://opencourse.inf.ed.ac.uk/sites/default/files/2024-01/FDS-lecture-notes-2024-01-28.pdf
https://zenodo.org/
https://figshare.com/
https://data.mendeley.com/
https://r4ds.had.co.nz/tidy-data.html

Happy to take any questions.
Feel free to get in touch with future questions or any feedback
on the session: a.hadjitofi@ed.ac.uk

https://forms.office.com/e/mWK1u5cXgT

mailto:a.hadjitofi@ed.ac.uk
https://forms.office.com/e/mWK1u5cXgT

Extra slides

Optimising code in data science: vectorise your functions

Vectorisation cannot be applied:
● Loop dependency
● Indirect memory access
● Code branching

Data types
Unlike Python lists, numpy allows
arrays to only have a single data

type and stores the data internally in
a contiguous block of memory.

Broadcasting
A feature of numpy that enables

mathematical operations to be carried out
between arrays of different sizes (allows

vectorising array operations so that looping
occurs in C instead of Python).

Refactoring (methods)

Red-green refactoring. “Test first
approach”. Review intended
development and write tests (red),
implement code (green) and then
identify weak points and refactor.

Simplifying methods. Addresses complicated
logic. Consolidate multiple conditionals that lead
to the same result or action to a single
expression (conditional expressions
refactoring). Adding / removing parameters, or
replacing parameters with explicit method and
call (methods calls refactoring).

Abstraction. Remove repetition
and redundancy from your code,
e.g. creating interfaces, setting up
new classes, hierarchy, class
inheritances, etc.

Composing method. Long methods
make code hard to understand and
sometimes change. Transfer a code
fragment from its original method
into a newly established one
(extraction).

