#### Inf2 – Foundations of Data Science S2 Week 4: Ethics of supervised learning



## THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS

#### Overview

- Fairness in classification and protected attributes
- Credit scoring case study

#### Fairness in Classification



many more...

### Prediction = Judgement

Prediction = judgement. It impacts lives of real people.

- Recidivism prediction for granting bail
- Predicting credit worthiness to give loans
- Predicting success in school/job to decide on admission/hiring

Are people being treated as they deserve?

#### The concern

- Certain attributes should be irrelevant to decisions.
- Example: gender, sexual orientation, minority groups ethnic, religious, medical, geographic, etc...
- Protected by law!
- Discrimination arises even without intent

### Example

- Google+ tries to classify real vs fake names
- Fairness problem:
  - Most training examples standard white American names: John, Jennifer, Peter, Jacob, ...
- Ethnic names often unique, much fewer training examples Likely
- Outcome: Prediction accuracy worse on ethnic names

#### From Invidividuals to decisions



### Fairness in Algorithmic Decision Making

- 1. Why it is important
- 2. Credit scoring as an example
- 3. Overview of equality legislation
- Case study: Andreeva G, Matuszyk A (2019) 'The Law of Equal Opportunities or Unintended Consequences: the impact of unisex risk assessment in consumer credit', Journal of Royal Statistical Society, Series A, <u>https://rss.onlinelibrary.wiley.com/doi/10.1111/rssa.12494</u>

#### European Union regulations on algorithmic decision making and a "right to explanation"

JANUARY 31, 2017

European Union regulations on algorithmic decision-making and a "right to explanation" Goodman & Flaxman, *2016* 

In just over a year, the General Data Protection Regulation (GDPR) becomes law in European member states. This paper focuses on just one particular aspect of the new law, article 22, as it relates to *profiling*, *non-discrimination*, and *the right to an explanation*.

Article 22: Automated individual decision-making, including profiling, potentially prohibits a wide swath of algorithms currently in use in, e.g., recommendation systems, credit and insurance risk assessments, computational advertising, and social networks. This raises important issues that are of particular concern to the machine learning community. In its current form, the GDPR's requirements could require a complete overhaul of standard and widely used algorithmic



#### Developer tutorials

The following tutorials provide different examples of detecting and mitigating bias. View

#### Credit scoring

Detecting and mitigating age bias on decisions to offer credit using the German Credit dataset

#### Medical expenditure

Detecting and mitigating racial bias in a care management scenario using Medical Expenditure Panel Survey data

idually below

#### Gender classification of face images

Detecting and mitigating bias in automatic gender classification of face images

# Credit scoring

### What is credit scoring?

- Decision support systems used in consumer credit
- Aims at risk assessment of:

 $\circ\,$  potential borrowers (application scoring)

- existing borrowers (behavioural scoring)
- Risk/creditworthiness is usually measured by Probability of Default (PD)

   Larger value means higher risk
- PD is predicted from potential borrower's characteristics on the basis of the analysis of known performance of previous customers

 $\circ$  Cf the lectures on Logistic Regression

#### Example of a scoring table

| Time at<br>current    | Less than 6<br>months | 6m – 2<br>years   | 2 – 6<br>years        | 6 - 10 years      | 10 + years | Unknown |              |
|-----------------------|-----------------------|-------------------|-----------------------|-------------------|------------|---------|--------------|
| address               | 0                     | 3                 | 6                     | 13                | 25         | 0       |              |
| Residential<br>Status | Owner                 | Tenant            | With<br>parents       | Unknown           |            |         |              |
|                       | 15                    | 5                 | 2                     | 0                 |            |         |              |
| Banking               | Current<br>account    | Saving<br>account | Current<br>and saving | No account        | Unknown    |         |              |
|                       | 5                     | 10                | 14                    | 0                 | 0          |         |              |
| Occupation            | Retired               | Full-time         | Part-time             | Self-<br>employed | Student    | Other   | Un-<br>known |
|                       | 21                    | 16                | 7                     | 6                 | 5          | 10      | 0            |
| Age                   | 18-25                 | 26-31             | 32-40                 | 41-54             | 55+        | Unknown |              |
|                       | 5                     | 10                | 15                    | 20                | 25         | 0       |              |



5 years at current address + 6 Home Owner + 15

Current and Saving Account + 14

Full Time Work + 16

40 years old + 15

Score 66



6 months at current address + 3 Tenant + 5 Current Account + 5 Self-Employed + 6 20 years old + 5 Score 24

# Equality legislation

### Equality/Anti-Discrimination Legislation

#### USA

Equal Credit Opportunity Act (ECOA, 1974) prohibits characteristics from being used in credit scoring (race, colour, national origin, gender, marital status, religion, receipt of public assistance, or exercise of consumer protection rights). Age has a special status.

#### EU

Articles 8, 19 of the Treaty of the Functioning of European Union (TFEU);

Gender Directive - Council Directive 2004/113/EC of 13 December 2004

Proposal for a Council Directive on implementing **the principle of equal treatment** between persons irrespective of religion or belief, disability, age or sexual orientation, COM(2008) 426 final.

#### UK

Equality Act (2010)

# Protected characteristics under UK Equality act

- Age unless good reason ('objective justification') can be shown for the differential treatment
- disability
- gender reassignment
- marriage and civil partnership
- pregnancy and maternity
- race
- religion or belief
- sex
- sexual orientation

#### Data description

- Portfolio of auto loans from a major bank in an EU country from 2003-2010
- Default definition is defaulting on the loan for 2 months (65 days)
- 80% (training) and 20% (test)

|        |                 | Training      |                 | Test            |              |                 |  |
|--------|-----------------|---------------|-----------------|-----------------|--------------|-----------------|--|
|        | Good            | Bad           | Total           | Good            | Bad          | Total           |  |
| Female | 16746<br>98.70% | 220<br>1.30%  | 16966<br>26.71% | 4186<br>98.70%  | 55<br>1.30%  | 4241<br>26.71%  |  |
| Male   | 45696<br>98.18% | 847<br>1.82%  | 46543<br>73.29% | 11424<br>98.18% | 212<br>1.82% | 11636<br>73.29% |  |
| Total  | 62442<br>98.32% | 1067<br>1.68% | 63509           | 15610<br>98.32% | 267<br>1.68% | 15877           |  |

### Research design

- Two Logistic regression models to predict Probability of Default:
  - 1. Model with *Gender* (training sample comprising both men and women)
  - 2. Model without Gender
  - 3. Model trained and tested only on men
  - 4. Model trained and tested only on women
- The models are compared from the points of view of
  - 1. how they affect the chances of men/women being offered credit
  - 2. predictive accuracy

### Relevant variables

There are 11 final variables selected by significance and predictive accuracy

- Marital status
- # kids
- Income
- Time in employment
- Profession
- Phone given
- Gender

- Loan duration
- Downpayment
- Car price
- Car age

| Variable                                   | Attribute<br>or category | % in<br>category | Results for model<br>with gender<br>(model 1) | Results for model<br>without gender<br>(model 2) | Results for model<br>for men only<br>(model 3) | Results for model<br>for women only<br>(model 4) |  |  |
|--------------------------------------------|--------------------------|------------------|-----------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|--|--|
| Intercept                                  |                          |                  | -7.3942                                       | -7.5207                                          | -7.6844                                        | -7.0066;                                         |  |  |
| Gender                                     | Female                   | 26.71            | -0.457;<br>(0.0867)                           | (0.1700)                                         | (0.2075)                                       | (0.5155)                                         |  |  |
| Number of children (reference:<br>no kids) | 1 kid                    | 23.26            | 0.19 (0.1009)                                 | 0.1525<br>(0.1000)                               | 0.267§§<br>(0.1219)                            | 0.1248<br>(0.1874)                               |  |  |
|                                            | 2 kids                   | 15.04            | 0.1918<br>(0.1302)                            | 0.1763<br>(0.1298)                               | Questions                                      |                                                  |  |  |
|                                            | 3+ kids                  | 3.12             | 0.3553<br>(0.2313)                            | 0.3494 (0.2310)                                  |                                                |                                                  |  |  |
|                                            | Missing information      | 10.87            | -0.6816;<br>(0.1254)                          | -0.6944;<br>(0.1251)                             | 1. In the mod                                  | lel with gender, is                              |  |  |
| Car price (reference: medium price lower)  | Cheap                    | 5.28             | -1.0987;<br>(0.1326)                          | -1.1048;<br>(0.1322)                             | 2. Does being                                  | g female make the                                |  |  |
|                                            | Medium price higher      | 59.58            | 0.426§<br>(0.1099)                            | 0.4406‡<br>(0.1095)                              | probability                                    | probability of default greater o                 |  |  |
| -                                          | Expensive                | 15.87            | 1.1813‡<br>(0.1116)                           | 1.1955‡<br>(0.1112)                              | smaller?                                       | wmuch?                                           |  |  |
| Down payment, % (reference: (35%, 50%])    | ≤25%                     | 16.87            | 1.2702‡<br>(0.1087)                           | 1.2603‡<br>(0.1085)                              | 4. What facto                                  | brs increase and                                 |  |  |
|                                            | (25%, 35%)               | 8.65             | 0.7133‡<br>(0.1248)                           | 0.7096‡<br>(0.1246)                              | decrease t                                     | he probability of                                |  |  |
|                                            | >51%                     | 34.49            | $-1.214/\ddagger$<br>(0.1940)                 | -1.20/5<br>(0.1941)                              | default the                                    | e most?                                          |  |  |
| Car age, years (reference: [0, 2))         | 2                        | 1.56             | (0.1454)                                      | (0.1448)                                         | ‡ <i>p</i> -v                                  | alue $< 0.0001.$                                 |  |  |
|                                            | [3,4)                    | 3.25             | 1.8426‡<br>(0.1196)                           | 1.8691‡<br>(0.1191)                              | § p-va                                         | alue $< 0.005$ .                                 |  |  |
|                                            | >4                       | 3.31             | 2.5302‡<br>(0.1348)                           | 2.5635‡<br>(0.1343)                              | 88 <i>p</i> -v                                 | value < 0.05.                                    |  |  |

Table 2. Parameter estimates (with standard errors are in parentheses) and model fit statistics for four logistic regression models to predict the PD<sup>+</sup>

#### Rejection rates by Gender for all unmarried customers



#### Courtesy of Galina Andreeva

### What can we conclude?

- Women benefit from the model with gender: • Women have had lower default rates in the past
- When gender is removed in the sample studied chances of being accepted for credit decrease for women, but increase for men
- Women in the group sampled still benefit when gender is not included in the model
- Thus equal treatment of individuals by ignoring a protected characteristic does not lead to equal outcome at the group level
- Why is there still an effect?

#### Proxies

#### Table 2(continued)

| Variable                                                                                                                         | Attribute<br>or category | % in<br>category | Results for model<br>with gender<br>(model 1) | Results for model<br>without gender<br>(model 2)                         | Results for model<br>for men only<br>(model 3) | Results for model<br>for women only<br>(model 4) |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|-----------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| Profession or occupation<br>(reference: gender                                                                                   | Female profession        | 5.89             | -0.5111                                       | -0.6108<br>(0.1928)                                                      | -0.7843§§ (0.2827)                             | -0.2068<br>(0.2653)                              |
| neutral)                                                                                                                         | Male profession          | 13.08            | -0.2709§§<br>(0.1134)                         | -0.224§§<br>(0.1129)                                                     | -0.2832§§<br>(0.1246)                          | -0.2767<br>(0.3003)                              |
| Model fit statistics<br>Intercept AIC<br>Intercept and covariates AIC<br>Cox and Snell pseudo- $R^2$<br>Nagelkerke pseudo- $R^2$ |                          | 0.0600<br>0.3823 | 10838.202<br>6976.242<br>0.0600<br>0.3823     | $\begin{array}{c} 10838.202 \\ 7003.602 \\ 0.0595 \\ 0.3796 \end{array}$ | 8467.386<br>5117.254<br>0.0707<br>0.4253       | 2351.084<br>1833.609<br>0.0337<br>0.2606         |

†The reference category is given in parentheses under the corresponding variable name.

 $\ddagger p$ -value < 0.0001.

\$ p-value < 0.005.

\$ *p*-value < 0.05.

Is the model without gender as accurate as the one with gender?

- To measure accuracy, use the metric of Area Under the Curve (AUC)
- To understand AUC, first understand the Receiver Operator Characteristic (ROC)





Demo at https://arogozhnikov.github.io/2015/10/05/roc-curve.html

### Predictive accuracy, AUC

|       | Total sample              |                              | Men                       | only                         | Women only                |                              |
|-------|---------------------------|------------------------------|---------------------------|------------------------------|---------------------------|------------------------------|
|       | Model 1<br>with<br>Gender | Model 2<br>without<br>Gender | Model 1<br>with<br>Gender | Model 2<br>without<br>Gender | Model 1<br>with<br>Gender | Model 2<br>without<br>Gender |
|       |                           |                              |                           |                              |                           |                              |
| Train | 0.9207                    | 0.9211                       | 0.9334                    | 0.9331                       | 0.8730                    | 0.8739                       |
| Test  | 0.8901                    | 0.8898                       | 0.9147                    | 0.9139                       | 0.7965                    | 0.7943                       |

- Models with and without gender have near-equal prediction accuracy
- Prediction accuracy is lower when smaller group is trained

#### Discussion

- Equal treatment does not translate into equal outcomes
- Minority segments are dominated by majority ones
- It is not possible to completely remove the effect of a protected characteristic without deleting all correlated characteristics
- Conclusion in the paper: the existing law is not effective in promoting equality when it comes to algorithms
- What do we think?