<InfPALS/>

for students, by students

Skills - Mondays 16:00-17:00, room 7.14 Wednesdays 14:00-15:00, room 7.14

Projects - Thursday 10:00-11:00, room 7.14

All sessions are in Appleton Tower!

Come along to learn useful skills like **Git**, **Command Line**, **and LaTeX** and build projects

with **Pygame** and **AI Models**

Inf2 - Foundations of Data Science: Estimation -Principle of confidence intervals

Announcements

InfPALS - especially LaTeX

Workshop

Lab

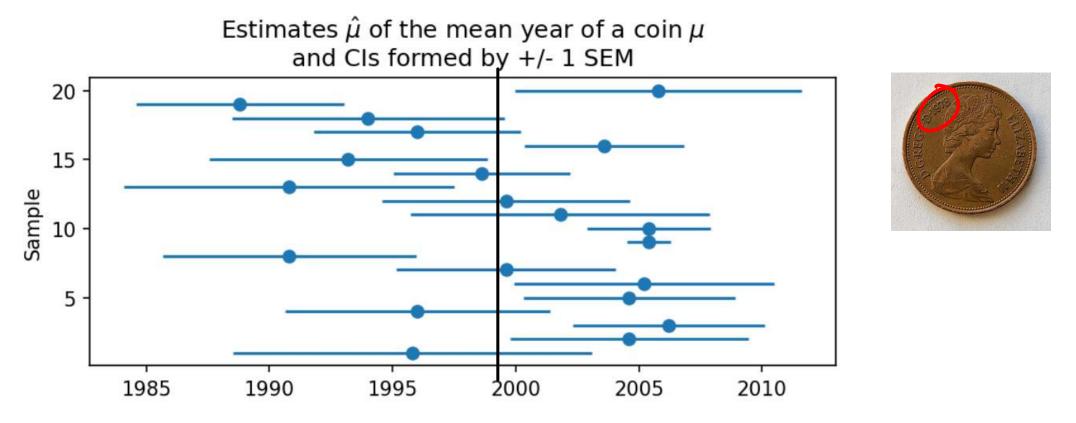
Project ideas - due Friday!

Office Hour - 10 on Wednesday

Last Lecture

- 1. Parameter
 - value of a statistic (e.g. mean or max) in population
 - parameter in distribution (e.g. mean, variance of normal)
- 2. Point estimator
 - Method of converting sample into estimate of paramater
 - E.g. Mean of sample (\mathbf{z}) estimates mean of population $\mathbf{\mu}$
- 3. Point estimator is random variable
 - a different random sample from population =>
 different value of point estimator
 - But we only have one sample, so only one value
- 4. Idea of confidence intervals for estimator
 - based on sample standard error of estimator

Confidence intervals from different samples



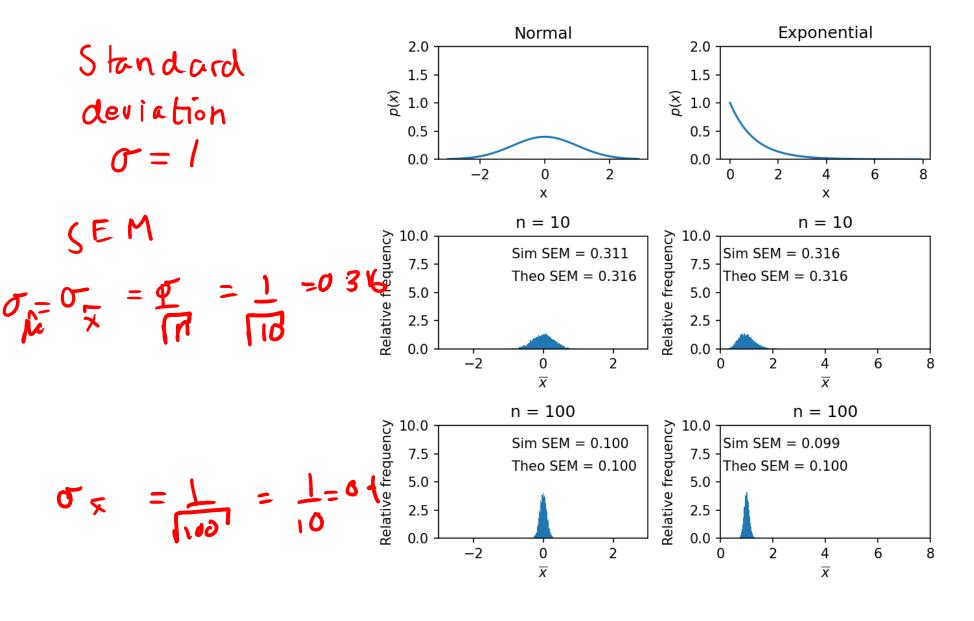
How do we calibrate the width of the confidence interval so that there is a specified chance that it encloses the true value?

Today

- 1. How to convert inferred sampling distribution of estimator into a confidence interval with a specified chance of enclosing true value
- 2. How to compute a confidence interval for mean of large sample z distribution
- 3. Choosing confidence levels and how much data to collect
- 4. Confidence intervals of parameters other than the meanBootstrap
- 5. How to calculate a confidence interval for mean of a small sample t distribution

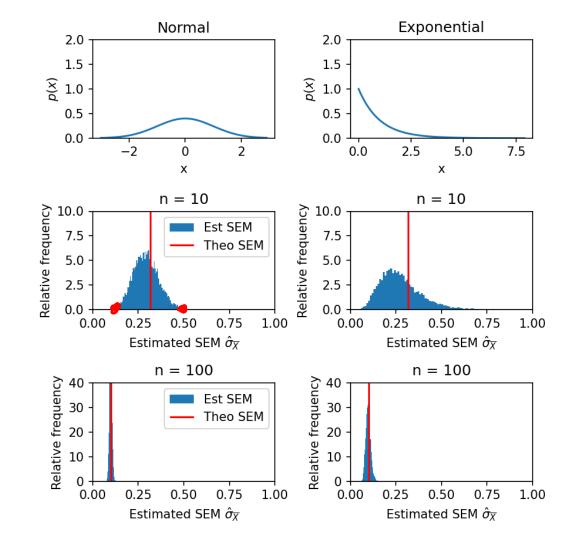
Theory reminder:

Standard error of mean for known distribution variance of

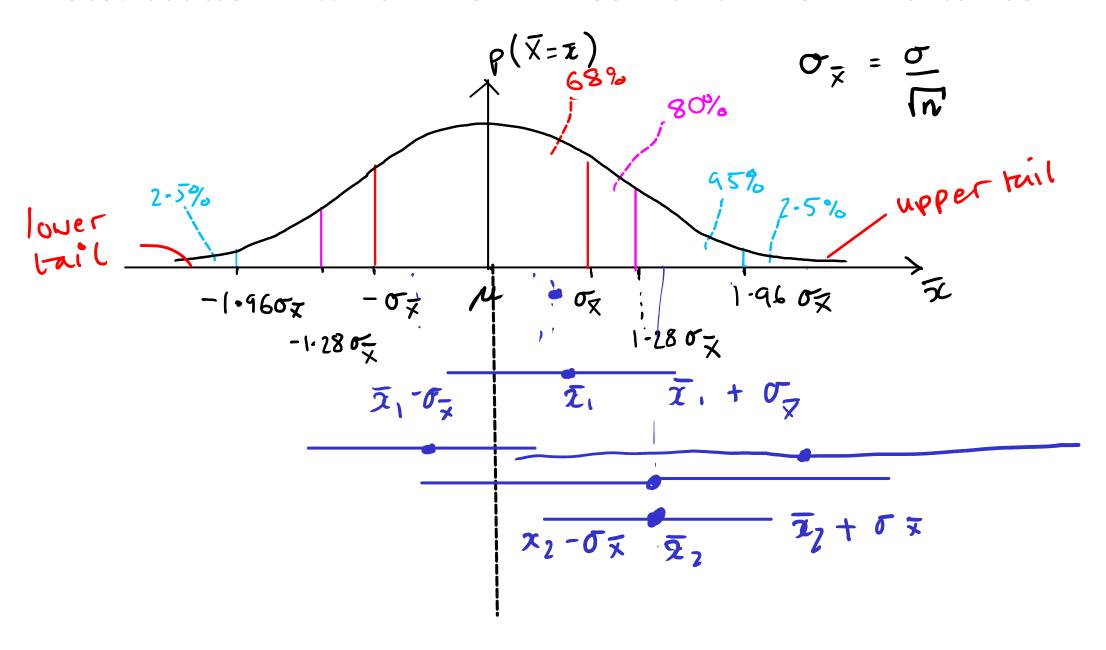


Estimated standard error for distribution with unknown variance σ

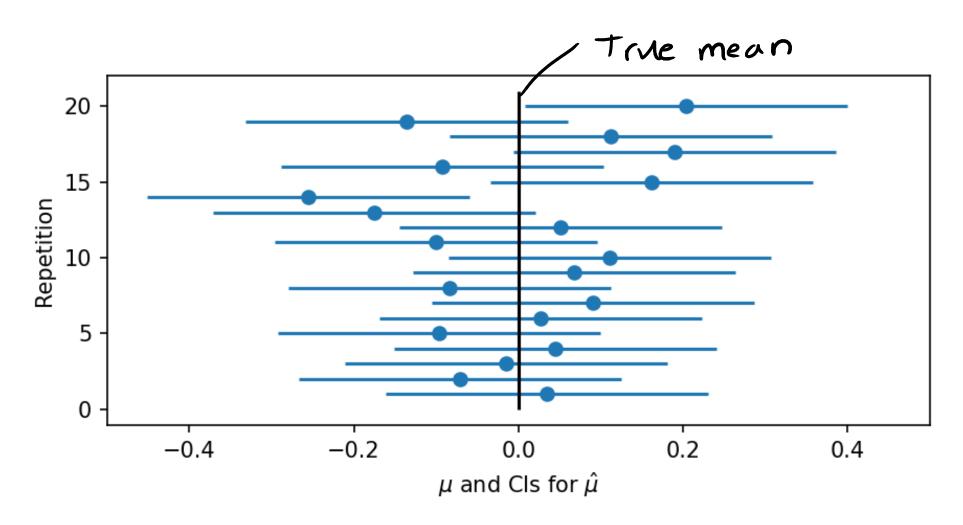
What if we don t know o?



Confidence interval of the mean of a sample from a distribution with unknown mean and known variance



E.g.: 95% Confidence intervals of mean of 100 samples from normal distribution with mean 0 and variance 1



Inf2 - Foundations of Data Science: Estimation -Definition of a confidence interval

Definition of a confidence interval

Considence interval: An interval

$$(\hat{\mathcal{O}} - a\hat{\mathcal{O}}_{\hat{\mathcal{O}}}, \hat{\mathcal{O}} + b\hat{\mathcal{O}}_{\hat{\mathcal{O}}})$$

that has a specified chance 1-x of containing the parameter V.

e.g.
$$x = 0.05 \Rightarrow 1-0.05 = 95\%$$
 C. I.

$$P(\hat{v} - a\hat{v}_{\hat{v}} < \hat{v} + b\hat{\sigma}_{\hat{v}}) = 1 - x$$

Ofton the interval is symmetric, le a=b.

$$P(\alpha \hat{r}_{\delta} > \hat{\theta} - \theta > -b\hat{\sigma}_{\delta}) = 1-\alpha$$

$$P(\alpha > \hat{\theta} - \theta > -b) = 1-\alpha$$

$$P(-b < \hat{\theta} - \theta < \alpha) = 1-\alpha$$

$$(a > \hat{\theta} - \theta < \alpha) = 1-\alpha$$

$$(a > \hat{\theta} - \theta < \alpha) = 1-\alpha$$

$$(a > \hat{\theta} - \theta < \alpha) = 1-\alpha$$

$$(a > \hat{\theta} - \theta < \alpha) = 1-\alpha$$

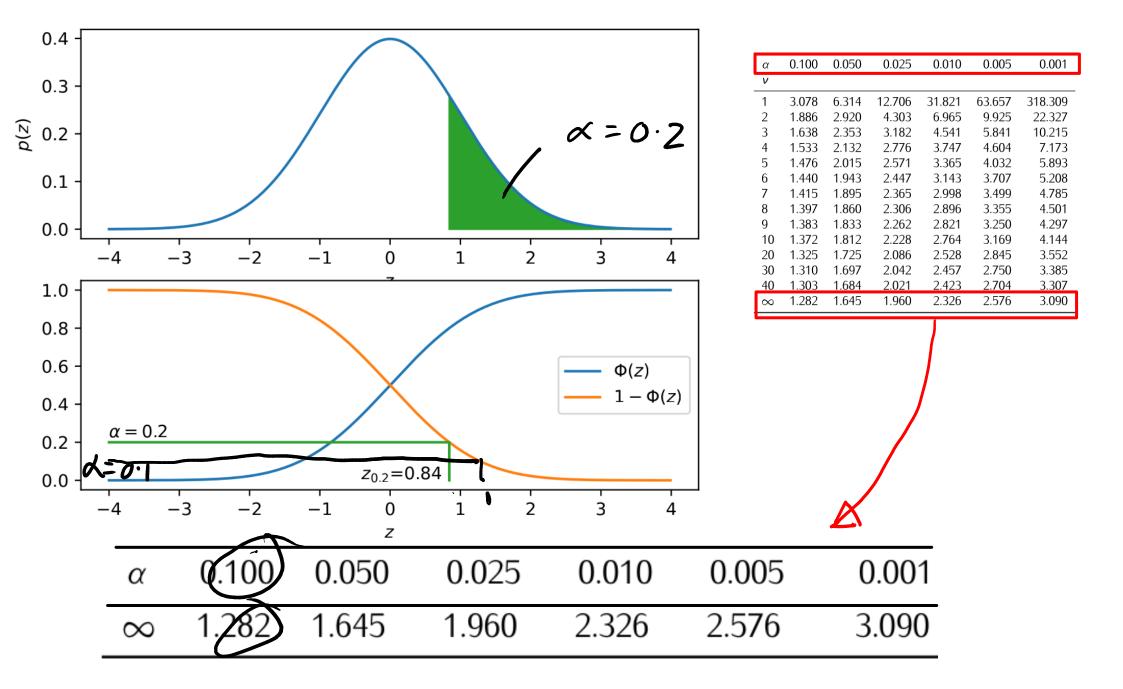
$$(a > \hat{\theta} - \theta < \alpha) = 1-\alpha$$

$$(a > \hat{\theta} - \theta < \alpha) = 1-\alpha$$

The distribution of the standardised sample mean of a large sample - the z-distribution

$$Q = \mu \qquad \widehat{Q} = \overline{X} \qquad \widehat{P} \qquad \widehat{Q} = \overline{X} \qquad \widehat{P} \qquad \widehat{Q} \qquad$$

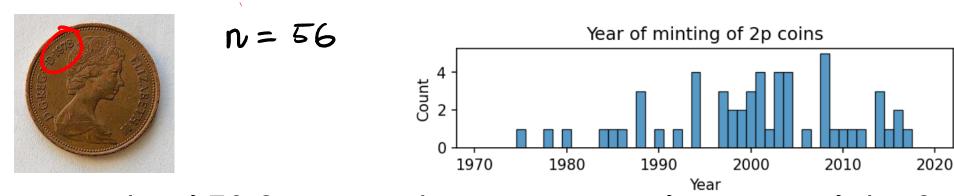
z-critical values



Inf2 - Foundations of Data Science: Estimation -Theoretical method of estimating the confidence interval of the mean of a

large sample

Confidence interval for the year of a 2p coin



In a sample of 56 2p coins, the mean year of minting of the 2p coins is 2000.8 and the sample standard deviation is 10.4. Give a 95% confidence interval for the mean year of minting in the population of all 2p coins.

Practice more in this week's workshop sheet

Solution

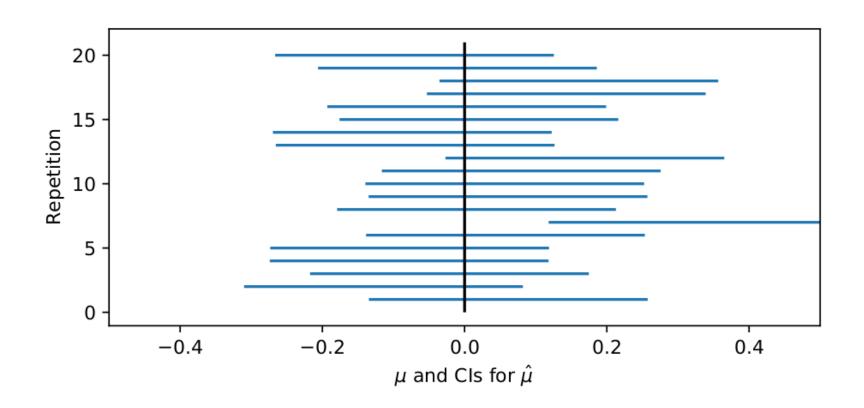
Mean
$$a_{1}e^{-\frac{1}{2}} = 2000 \cdot 8$$
 years
Sample $a_{2}e^{-\frac{1}{2}} = 10 \cdot 4$ years
S. E. M $a_{3}e^{-\frac{1}{2}} = 10 \cdot 4$ = 1.390
Large sumple $(x) = 10 \cdot 4 = 10 \cdot 4$
Large sumple $(x) = 10 \cdot 4 = 10 \cdot 4$
 $(x) = 10 \cdot 4 = 10 \cdot 4 = 10 \cdot 4$
 $(x) = 10 \cdot 4 = 10 \cdot 4 = 10 \cdot 4$
 $(x) = 10 \cdot 4 = 10 \cdot 4 = 10 \cdot 4 = 10 \cdot 4$
 $(x) = 10 \cdot 4 = 10 \cdot 4 = 10 \cdot 4 = 10 \cdot 4$
 $(x) = 10 \cdot 4 = 10 \cdot 4 = 10 \cdot 4 = 10 \cdot 4 = 10 \cdot 4$
 $(x) = 10 \cdot 4 = 10 \cdot$

Reporting confidence intervals

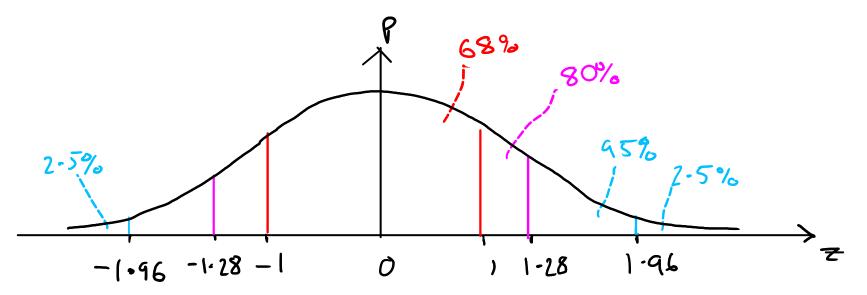
$$M = 2001$$
, $CI = 1998 - 2004$ (95% CI)
 $\hat{\mu} = 2001 \pm 3$ (95% CI)

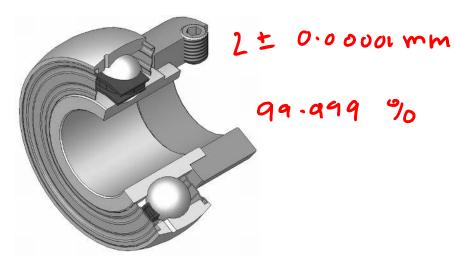
Inf2 - Foundations of Data Science: Estimation -Interpretation of confidence intervals

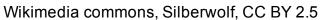
Confidence intervals are a random interval



What level of confidence should we choose?



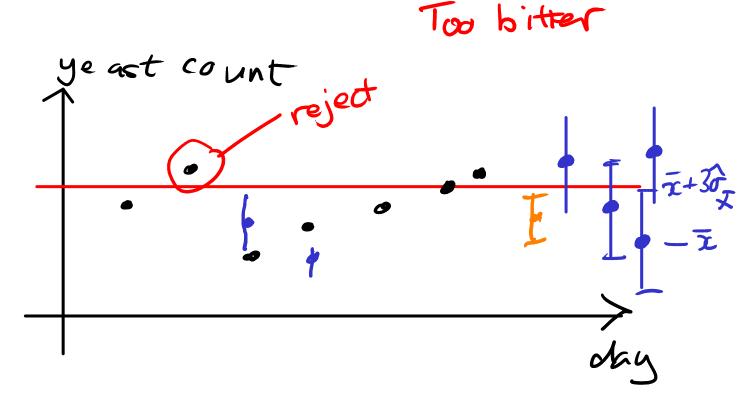




Wikimedia commons, Kiefer, CC BY SA 2.0

How much data do we collect?

A question inspired by the work of "STUDENT" (aka W. S. Gosset) in a brewery



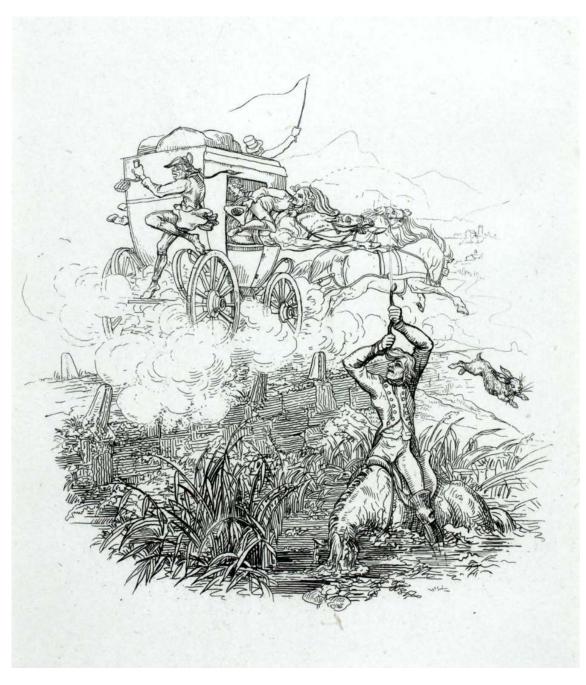
By Satirdan kahraman - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=153514719

Suppose we only want 1% of beer to be too bitter What level of confidence should we have? How many samples per day should we make?

Inf2 - Foundations of Data Science: Estimation -Bootstrapping

THE UNIVERSITY of EDINBURGH Informatics

Principle of bootstrapping



- Treat the sample like a population
- Resample estimator from it to get sampling distribution
- Sample is similar to population for a large sample

Related lab on the bootstrap

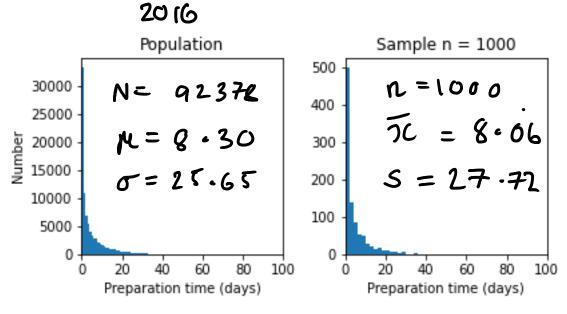
E.g. Japanese restaurant reservation times

Mstyslav Chernov, Wikimedia Commons, CC BY SA 3.0

Preparation time."

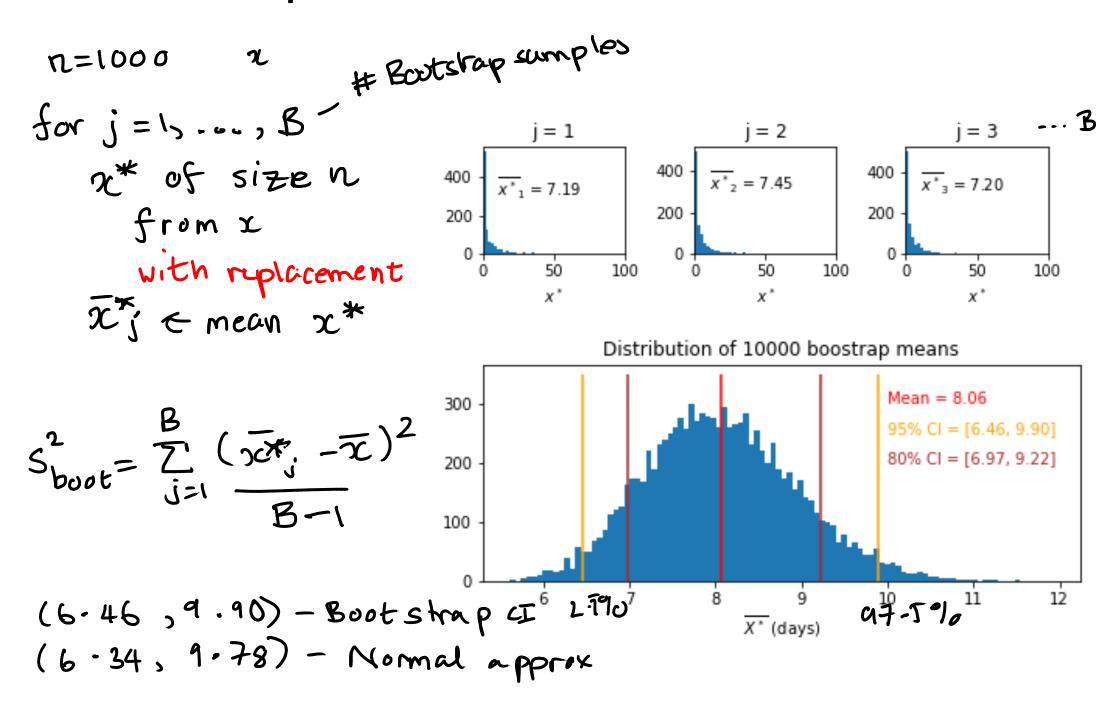
= Time of reservation

- Time reservation made



	Population	Sample
count	92378.00	1000.00
mean	8.30	8.06
std	25.65	27.72
min	0.00	0.00
25%	0.21	0.17
50%	2.08	1.96
75%	7.88	6.92
max	393.12	364.96

Bootstrap confidence interval for the mean



General formulation of the bootstrap

Bootstrap CI.
$$\hat{V} = \hat{\sigma}^2$$

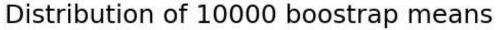
- Sample n items from & with replacement
- Compute sample Stat of the new sample 0.
- Boutskap estimator of varance of statistic

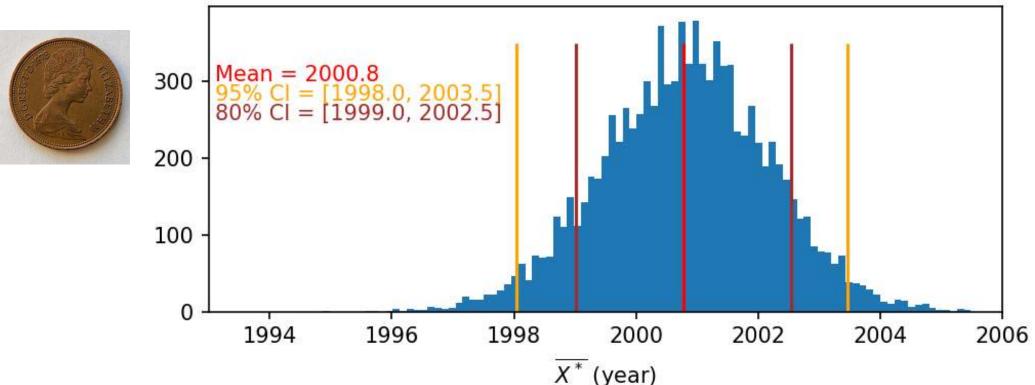
$$S^{2}_{\text{boot}} = \frac{B}{\sum_{j=1}^{B} (\hat{Q}_{j}^{*} - \hat{Q})^{2}}$$

- Find CI from Boot strap dist.

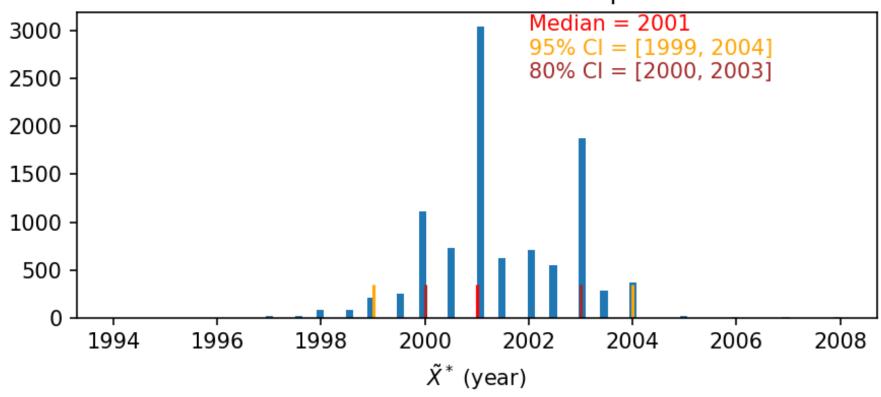
V commality - median mean x Extremes - max or min

Bootstrap mean coin year



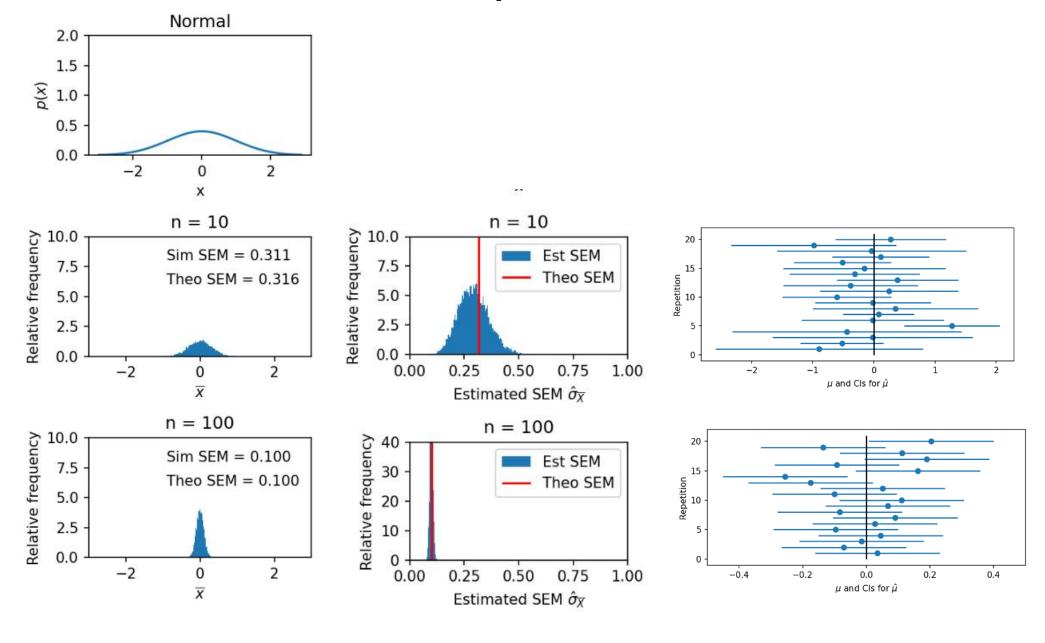


Bootstrap median coin year

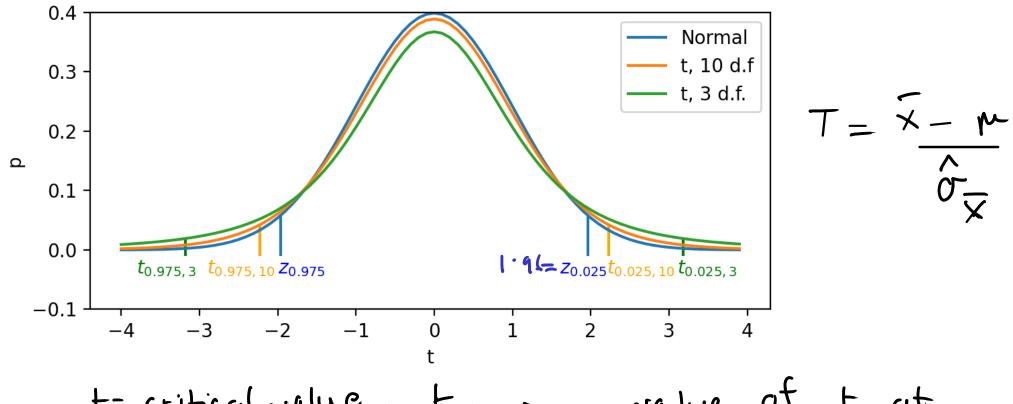


Inf2 - Foundations of Data Science: Estimation -Confidence intervals for the mean for small samples

Small samples



The t-distribution



t-critical value tx, > : value of t at which, in a t-distribution with 2) degrees of freedom has an area under the curve of a to its right.

Small samples

Number of degrees of freedom $\nu = n-1$

Example

$$n = 29$$
 coins

Estimated SEM,
$$\sigma_{\overline{X}} = S$$

Estimated SEM,
$$\sigma_{\overline{x}} = \frac{S}{\sqrt{N}} = \frac{11.444}{\sqrt{29}} = 2.125$$
 years

$$\hat{\mu} = \bar{\chi}$$

$$t-statistic$$
 $T=\frac{X-\mu}{2x}$

Using the t-distribution to calculate a confidence interval

95% C.
$$T \Rightarrow x = 0.05$$

Sample size $n \Rightarrow y = n-1$ d.f.
 $t_{x/2} = t_{x/2}, n-1$ t-critical value
 $\overline{x} - t_{x/2} = t_{x/2}, n-1$ $\overline{x} + t_{x/2} = t_{x/2}$
 $n = 29, x = 0.05 \Rightarrow t_{0.025}, 29-1 = t_{0.025}, 28$
 $t_{0.025}, 280 = 2.181 \times 1.125 = 4.871$ years
 $\Rightarrow \hat{\lambda} = 2001 = 5$ years (95% C. T .)

Summary

- 1. Principle and meaning of confidence intervals
- 2. Confidence intervals of the mean of a large samples (n > 40) computed theoretically
 - z distribution
- 3. Confidence intervals for more types of estimator computed using the bootstrap
- 4. Confidence intervals of the mean of a small sample (n < 40) computed theoretically
 - t distribtion

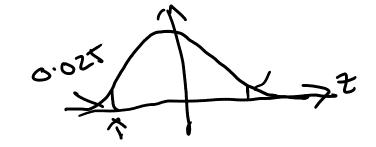
Japanese restaurant confidence interval calculation

$$N = 92372$$
 $N = 1000$
 $T = 8.06$
 $T = 27.65$
 $S = 27.72$

Estimated SEM
$$6x = s = 27.72 = 0.88$$
 days

Large sample => Normal distribution of sample mean => "z" distribution

$$a=b=Z_{1/2}=Z_{0.025}=1.96$$



$$(\bar{\chi} - \bar{\chi}_{0.025} \hat{\sigma}_{\bar{\chi}}) \bar{\chi} + \bar{\chi}_{0.025} \hat{\sigma}_{\bar{\chi}}) = (6.34, 9.78)$$

Reporting confidence intervals

$$\frac{(6.34, 9.78)}{M = 8.06, CT = 6.34 - 9.78}$$

$$M = 8.06 \pm 1.72 \quad (95\% \text{ CT})$$

$$\frac{4}{20.025} = 1.96 \times 0.88$$

$$\hat{N} = 8.06 \pm 0.88 \quad (Mean \pm 1.56 \text{ M})$$