Inf2 – Foundations of Data Science: Hypothesis testing

THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS OF DATA SCIENCE

Plan for statistical inference

- 1. Randomness, sampling and simulations (S2 Week 1)
- 2. Estimation, including confidence intervals (S2 Week 2)
- 3. Hypothesis testing (S2 Week 3)
- 4. A/B testing (S2 Week 3)

Onwards to Logistic regression (S2 Week 4)

Today

- 1. Principle of hypothesis testing (using statistical simulations)
- 2. p-values (using statistical simulations)
- 3. Issues in hypothesis testing
- 4. Theoretical methods
- 5. Practical applications
- 6. Example: testing for goodness of fit to a model

Inf2 – Foundations of Data Science: Hypothesis testing – Principle of hypothesis testing

THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS OF DATA SCIENCE

Inferential statistics tasks: Hypothesis testing

Yes/no questions: E.g. 1: "Is Chocolate good for you"

E.g. 2: Is a coin biased?

E.g. 3: Swain versus Alabama (1965). Is this jury selection procedure biased?

Population of Alabama Jury panel of selection : 001 2690 Black 8 Black and 74% Non-92 Non-black black

Statistical simulation versus observations

Simulate unbiased procedures Compare with observations

Method of hypothesis testing

Null hypothesis : Claim initially assumed to be true, formalised as a statistical model

e.g. Hostinc jury panel was chosen by random selection from the population in the district. e.g. Ito: The coin was unbiased

Alternative hypothesis : Claim contractictory to , typically not formalised as a statistical model

eg. Ha: The jury was chosen by some other, unspecified, method that was unifavourable to Black people eg Ha: The coin is biased (either towards heads or bails) AIM: Reject or not reject H,

Test procedure

- 1. Test statistic: e.g. number of black people on a jury panel $t_0 = 8$ (observed)
- 2. Distribution of the test statistic under H_{\bullet}

3. (a) Rejection region(b) Return a p-value

One-tailed rejection regions

Two-tailed rejection regions

Hai Number of black people is
below
the number expected by chanceHai Number of heads is
different from
the number expected by chanceObservation in rejection region => reject, otherwise do not rejectReject at 5% level?Reject at 5% level?

Inf2 - Foundations of Data Science: Hypothesis testing p-values

THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS OF DATA SCIENCE

Principle of p-values

Observed data is boundary of rejection region

Definitions of the p-value

THE AMERICAN STATISTICIAN 2016, VOL. 70, NO. 2, 129–133 http://dx.doi.org/10.1080/00031305.2016.1154108

EDITORIAL

The ASA's Statement on p-Values: Context, Process, and Purpose

Informally, a p-value is the probability under a specified statistical model that a statistical summary of the data (e.g., the sample mean difference between two compared groups) would be equal to or more extreme than its observed value.

The p-value is the probability, calculated assuming the null hypothesis is true, of obtaining a value of the test statistic at least as contradictory to H0 as the value calculated from the available sample.

(Modern Mathematical Statistics with Applications, p. 456)

Question

1. In the hypothetical case of 8 black people on the jury, which has a p-value of 0.10, is the null hypothesis true?

2. For the coin tossing, is the proability that 2p coins are unbiased equal to the p=0.118, or 1-p = 0.882 ?

What p-values are and are not (ASA Statement on Statistical Significance and P-values)

P-values can indicate how incompatible the data are with a specified statistical model.

P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone .

Aspects of hypothesis testing

1. Decide whether a hypothesis or model is compatible with data from observational studies or randomised experiments

2. Investigate mechanisms specific to data

Inf2 - Foundations of Data Science: Hypothesis testing -Issues in hypothesis testing

THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS OF DATA SCIENCE

"Statistical significance" $p < 0.05 \Rightarrow$ "statistically significant" * significant at the p < 0.06 level ** " p < 0.01 " *** " p < 0.01 "

Q: Why do so many colleges and grad schools teach p=0.05? A: Becuase that's still what the scientific community and journal editors use

- Q: Why to so many people still use p=0.05?
- A: Becuase that's what they were taught at grad school.

- George Cobb, ASA Statement on p-values

Question

In the coin tossing experiment, imagine that we repeat the experiment 1000 times and that we demand statistical significance at the 0.01 level. Assuming the null hypothesis is true (unbiased coin), on how many experiments do we expect to reject the null hypothesis?

Type I and Type II Errors

"Cherry-picking", "Data dredging", "p-value hacking"

Proper inference requires full reporting and transparency.

P-values and related analyses should not be reported selectively. Conducting <u>multiple</u> analyses of the data and reporting only those with certain *p*-values (typically those passing a significance threshold) renders the reported *p*-values essentially uninterpretable. Cherry-picking promising findings, also known by such terms as data dredging, significance chasing, significance questing, selective inference, and "p-hacking," leads to a spurious excess of statistically significant results in the published literature and should be vigorously avoided. . . (*ASA Statement on Statistical Significance and P-values*)

Multiple testing

Suppose 20 tests; 0.05 chance Type I error on each test => 0.95 chance of no type I error on e test => 0.95²⁰ chance no type I errors overall => 1-0.95²⁰ = 0.64 chance type I error

Inf2 - Foundations of Data Science: Hypothesis testing -Theoretical methods

THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS OF DATA SCIENCE

Determining p-values from probability dists

p-value =
$$\Phi(t_0 - \mu)$$
 where $\Phi(t)$ cumulative dist
function of z-distribution

Normal approximation to the binomial distribution

n large => binomial dist is approx normal with

$$\mu = np$$
 and $\sigma^2 = np(1-p) = 100 \times 0.26 \times (1 - 0.26)$
=> $\overline{Z} = T_0 - \mu$ has a \overline{z} -distribution
190 rejection region has 99% of weight to the right =>
At boundary of $1^{\circ}/_{6}$ rejection region
 $\overline{Z} = \overline{z}_{0.99} = \overline{T_0 - \mu} => \overline{T_0} = \mu + \sigma \overline{z}_{0.95}$

z-critical values

P-values computed by various methods for Swain versus Alabama

t_0	Simulation	Binomial	Normal
8	0	4.73e-06	2.03e-05
15	0.0067	0.0061	0.0061
20	0.1020	0.1030	0.0857

Inf2 - Foundations of Data Science: Hypothesis testing -Confidence intervals and p-values

THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS OF DATA SCIENCE

Confidence intervals and p-values

Approx relation: if 95% CI for parameter doesn't contain 0, reject that

p-values in Regression output

Question

This data shows the relationship between BMI and steps walked each day by men and women.

How would you go about testing if there is a relationship between BMI and number of steps walked?

Inf2 - Foundations of Data Science: Hypothesis testing -Testing for goodness-of-fit

THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS OF DATA SCIENCE

Multiple categories

American Civil Liberties Union investigation into jury selection in Alameda County, CA

	Caucasian	Black/AA	Hispanic	Asian/PI	Other	Total	
Population %	54	18	12	15	1	100	
Observed panel numbers	780	117	114	384	58	1453	
Expected panel numbers	784.62	261.54	174.36	217.95	14.53	1453.00	า
(Observed—Expected) ² Expected	0.03	79.88	20.90	126.51	130.05	357.36	$\boldsymbol{\chi}$

$$\frac{1.\text{ Test statistic}}{k - groups}$$

$$p_i - population proportion in the itm group$$

$$n_i - observed number in itm group$$

$$n - total size of population n = \frac{z}{2}$$
 ni

$$np_i - expected number in each group$$

$$\chi^2 = \frac{z_i}{2} \frac{(n_i - np_i)^2}{np_i} \frac{e.g.}{150} \frac{n_i = 95}{n_i = 100}$$

$$\chi^2 = 357.34$$

2. Ho formulated as a statistical model

Draw
$$n_1$$
, ..., n_k from Multinomial distribution
 $p(n_1, ..., n_k) = n! P_1^{n_1} \cdot ... \cdot P_k^{n_k}$
 $(n_1!) \cdots (n_k!)$

but constrained so that
$$\sum_{i=1}^{k} n_i = n$$

=> k-1 degrees of freedom.

r 20

Summary

- Principle of Hypothesis testing

 (a) Rejection method
 (b) p-values
- 2. Hypothesis testing applied to problems involving testing if observed numbers are consistent with expected proportions
 - Many other uses
- 3. Uses and limitations of hypothesis testing and p-values