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Plan for statistical inference
1. Randomness, sampling and simulations (S2 Week 1)
2. Estimation, including confidence intervals (S2 Week 2)
3. Hypothesis testing (S2 Week 3)
4. A/B testing (S2 Week 3)

Onwards to Logistic regression (S2 Week 4)



Today

1. Principle of hypothesis testing (using statistical
simulations)

2. p-values (using statistical simulations)
3. Issues in hypothesis testing

4. Theoretical methods

5. Practical applications

6. Example: testing for goodness of fit to a model
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Inferential statistics tasks: Hypothesis testing

Yes/no questions: E.g. 1: "lIs Chocolate good for you®

E.g. 2: Is a coin biased? .

E.g. 3: Swain versus Alabama (196D).
Is this jury selection procedure biased?

Pop \n Non ot Juwcy penel of

Nl abpra M |00 -

2L, Black \’}% Black

F6, Nown- A4) WNrn- black
blade




Statistical simulation versus observations

Simulate unbiased procedures
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Method of hypothesis testing

Null hypothesis  : Claim initially assumed to be true, formalised
as a statistical model
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Test procedure

1. Test statistic: e.g. number of black people on a jury panel
t,=& ( observed )

2. Distribution of the test statistic under H,
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3. (a) Rejection region
(b) Return a p-value



One-tailed rejection regions Two-tailed rejection regions

Swain vs Alabama Tossing unbiased 2p coin
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H:Number of black people is H.: Number of heads is
below different from
the number expected by chance  the number expected by chance

Observation in rejection region => reject, otherwise do not reject

Reject at 5% level? Reject at 5% level?
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Principle of p-values

Observed data is boundary of rejection region
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Definitions of the p-value

THE AMERICAN STATISTICIAN Faior ik :
2016, VOL. 70, NO. 2,129-133 a‘y or rancis
http://dx.doi.org/10.1080/00031305 2016.1154108 b S ;

EDITORIAL

The ASA's Statement on p-Values: Context, Process, and Purpose

Informally, a p-value is the probability under a specified statistical
model that a statistical summary of the data (e.g., the sample
mean difference between two compared groups) would be equal to
or more extreme than its observed value.

The p-value is the probability, calculated assuming the null
hypothesis is true, of obtaining a value of the test statistic at
least as contradictory to HO as the value calculated from the
available sample.

(Modern Mathematical Statistics with Applications, p. 456)




Question

1. In the hypothetical case of 8 black people on the jury,
which has a p-value of 0.10, is the null hypothesis true?

2. For the coin tossing, is the proability that 2p coins are
unbiased equal to the p=0.118, or 1-p = 0.882 ?



What p-values are and are not
(ASA Statement on Statistical Significance and P-values)

P-values can indicate how incompatible the data are with a
specified statistical model.

P_values do not measure the probability that the studied hypothesis
is true, or the probability that the data were produced by random
chance alone



Aspects of hypothesis testing

1. Decide whether a hypothesis or model is compatible with
data from observational studies or randomised experiments

2. Investigate mechanisms specific to data
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"Statistical significance"
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Q: Why do so many colleges and grad schools teach p=0.05?
A: Becuase that's still what the scientific community and
journal editors use

Q: Why to so many people still use p=0.057

A: Becuase that's what they were taught at grad school.

- George Cobb, ASA Statement on p-values



Question

In the coin tossing experiment, imagine that we repeat

the experiment 1000 times and that we demand statistical
significance at the 0.01 level. Assuming the null hypothesis

ls true (unbiased coin), on how many experiments do we expect

to reject the null hypothesis?
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"Cherry-picking", "Data dredging", "p-value hacking"

Proper inference requires full reporting and transparency.

P-values and related analyses should not be reported selectively. Conducting multiple
analyses of the data and reporting only those with certain p-values (typically those passing
a significance threshold) renders the reported p-values essentially uninterpretable. Cherry-

picking promising findings, also known by such terms as data dredging, significance
chasing, significance questing, selective inference, and “p-hacking,” leads to a spurious
excess of statistically significant results in the published literature and should be vigorously
avoided. . . (ASA Statement on Statistical Significance and P-values)



Multiple testing
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Determining p-values from probability dists

Binomial distribution
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Normal approximation to the binomial distribution
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P-values computed by various methods
for Swain versus Alabama

to Simulation Binomial Normal

8 0 4.73e-06 2.03e-05
15 0.0067 0.0061 0.0061
20 0.1020 0.1030 0.0857
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Confidence intervals and p-values
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Dep. Variable:
Model:

Method:

Date:

Time:

No. Observations:
Df Residuals:

Df Model:

Covariance Type:

p-values in Regression output

Least Squares
Wed, 26 Oct 2022
47 Tog-Likelihood: -294.31

Grade

OLS

09:42:

R-squared:
Adj. R-squared:

0.289
0.251

80
75
4

nonrobust

F-statistic:

Prob (F-statistic):

AlC:
BIC:

7.622
3.30e-05

598.6
610.5

coef
Intercept| 36.1215
Algebra| 0.9610
ACTM| 0.2718
ACTNS| 0.2161
HSRANK| 0.1353

std err
10.752
0.264
0.454
0.313
0.104

3.360
3.640
0.599
0.690
1.306

P>|t|
0.001
0.000
0.551
0.492
0.196

[0.025 0.975]
14.703 57.540
0.435 1.487
0632 1.175
0408  0.840
0071 0342
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Question

This data shows the
relationship between
BMI and steps walked
each day by men and
women.

How would you go about

testing if there is a
relationship between

BMI and number of steps

walked?
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Yanai and Lercher (2020)
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Multiple categories

American Civil Liberties Union investigation into
jury selection in Alameda County, CA

Caucasian  Black/AA  Hispanic Asian/Pl  Other  Total

Population % 54 18 12 15 1 100
Observed panel numbers 780 117 114 384 58 1453

Expected panel numbers ~ 784.62  261.54 17436  217.95  14.53 1453.0 "
e e 0.03 79.88 2090 12651  130.05 36) X
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Summary

1. Principle of Hypothesis testing
(a) Rejection method
(b) p-values

2. Hypothesis testing applied to problems involving
testing if observed numbers are consistent with
expected proportions
- Many other uses

3. Uses and limitations of hypothesis testing and p-values



