Inf2 – Foundations of Data Science: Logistic regression

THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS OF DATA SCIENCE

Announcements

- Week 4 workshop - we'll look at the paper that we'll be refer to in the exam

- Uses concepts from today's lecture!
- Solutions for Week 3 WS

A new unit: The Maximum Likelihood Principle and Regression

Week 4: Logistic regression

Week 5: The maximum likelihood principle, and how we can use it to derive linear, logistic and other types of regression

Today

- Recap of Linear Regression
- Principle of Logistic Regression
- Interpretation of Logistic Regression coefficients

Wednesday:

- Multiple Logistic Regression
- Logistic Regression as a classifier

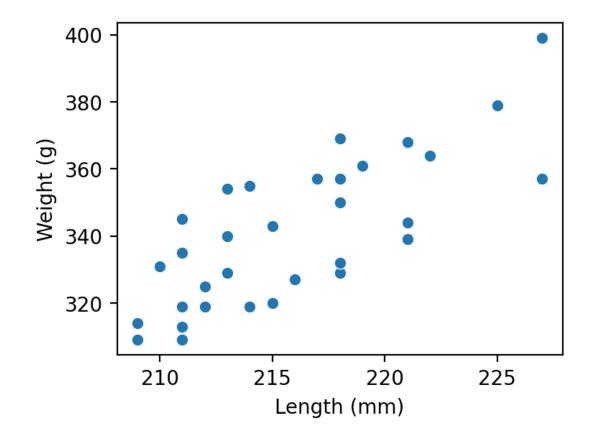
Inf2 - Foundations of Data Science: Recap of linear regression and classification

THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS OF DATA SCIENCE

(Simple) Linear Regression

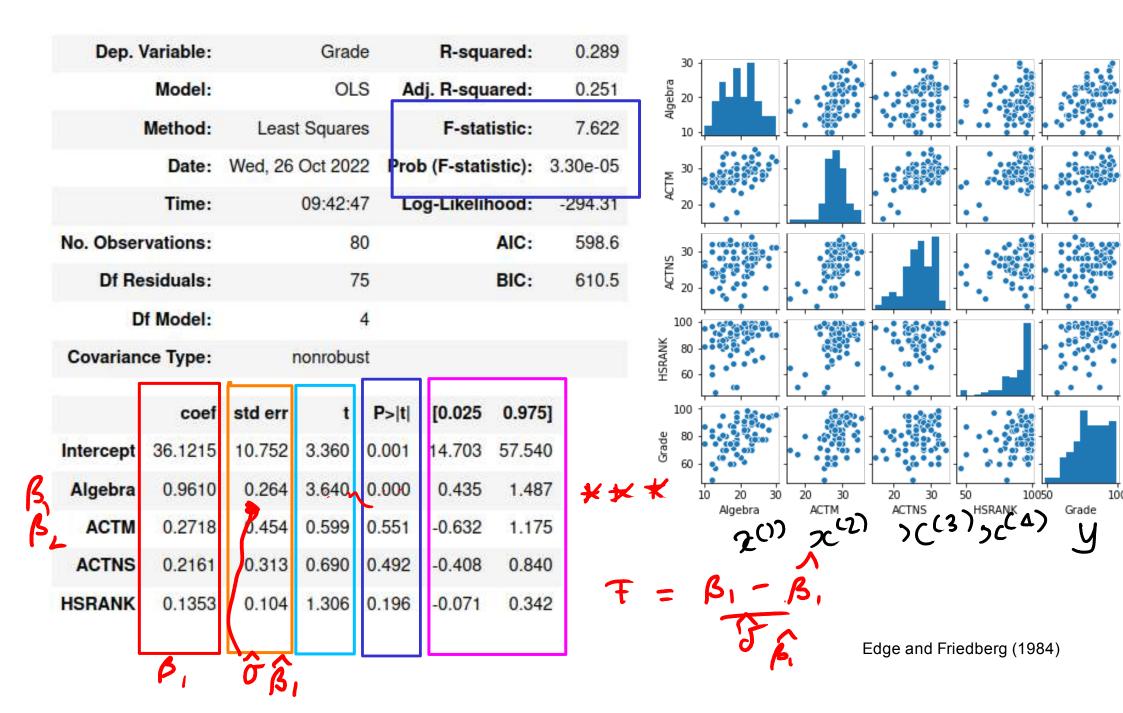
- Given numeric predictor variable, predict a numeric response variable
- Regression coefficients set by minimising sum of squared errors between data and model (can be done analytically)



Multiple regression

- Multiple predictors
- Categorical predictors via one-hot encoding or indicator variables
- Can be used for prediction...
- ... or explanation, including"controlling for" variables not of interest
 - => can use observational data to assess effect of treatment on outcome

Confidence intervals and p-values of regression coefficients



Inf2 – Foundations of Data Science: The principle of logistic regression

THE UNIVERSITY of EDINBURGH informatics

FOUNDATIONS OF DATA SCIENCE

Supervised classification

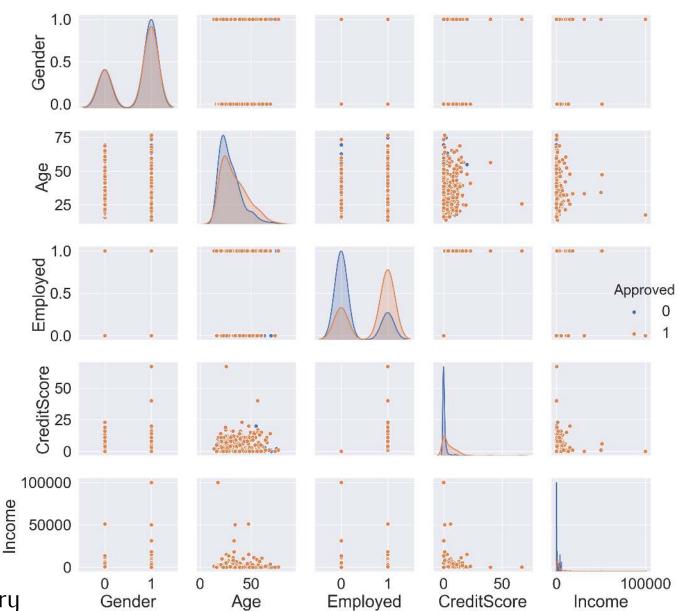
Classifier predicts the label or class of an unseen point from features

Binary (or dichotomous) response

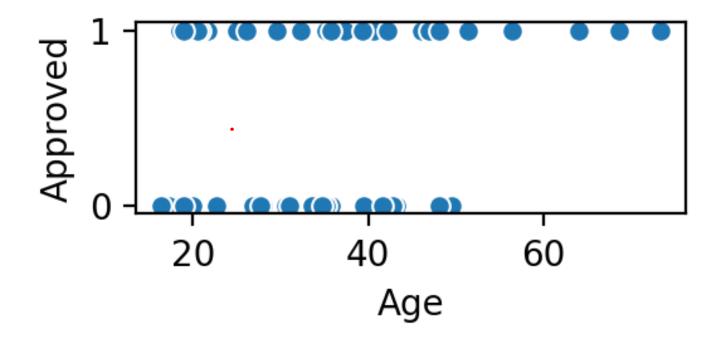
variable:

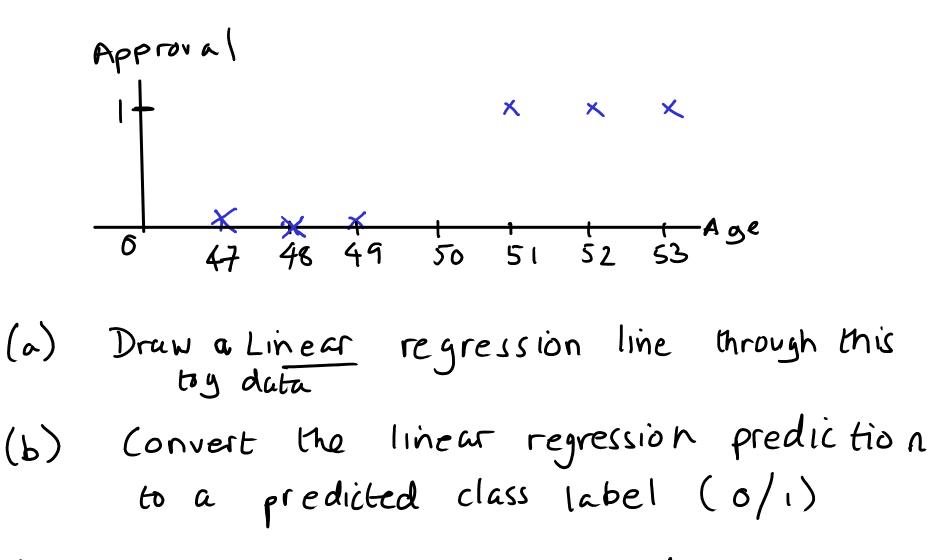
Credit

Approved Not approved

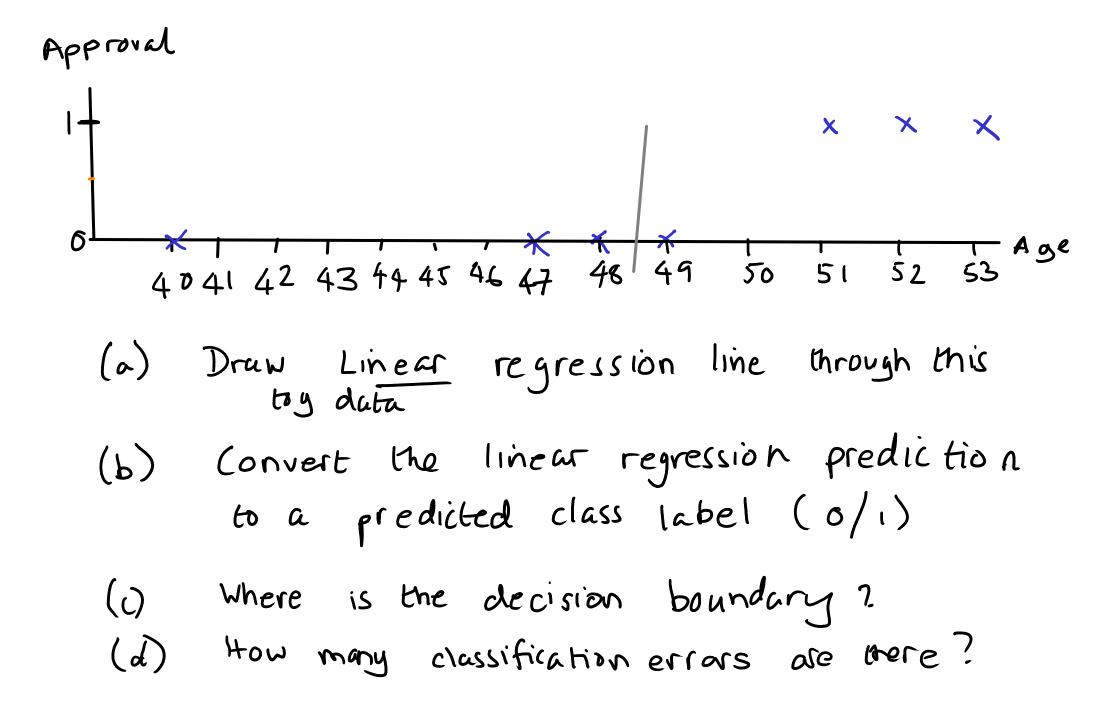


Classification task on one continuous variable

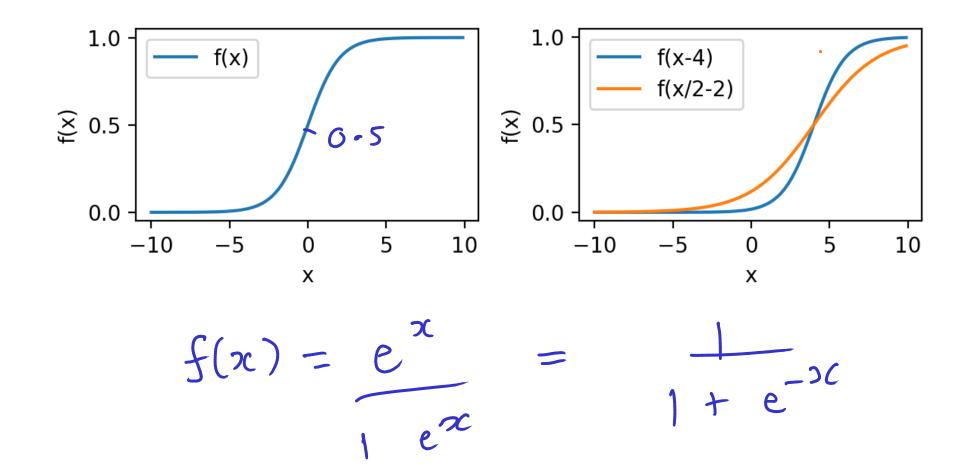




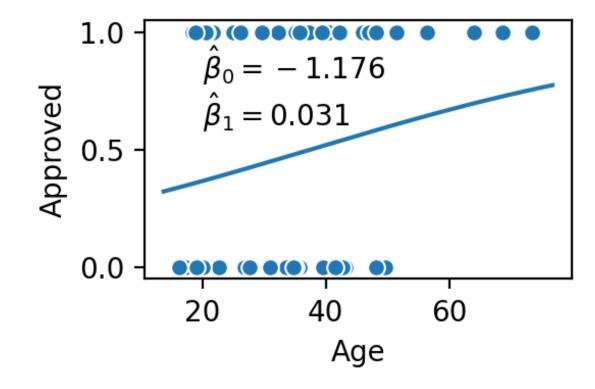
(c) Where is the decision boundary?
 (d) How many classification errors are overe?



Logistic function



Application to continuous variable in credit example



Binary variables: odds and odds ratios

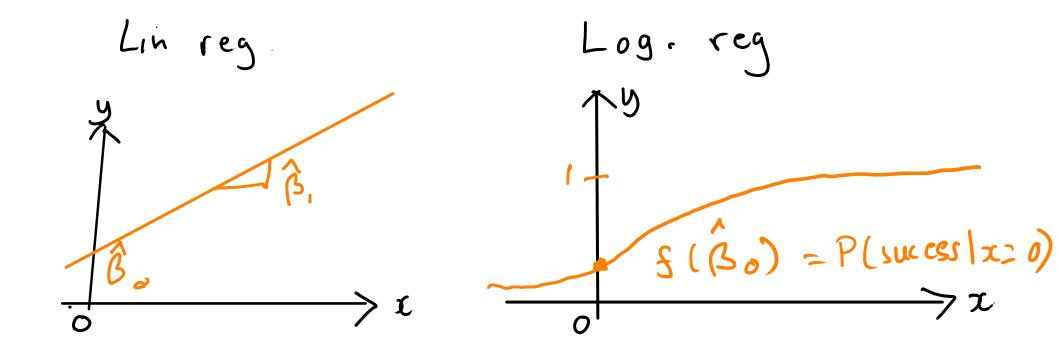
Employed	Approved	Not approved	Approval odds
0	0.25	0.75	0.34

Inf2 - Foundations of Data Science: Interpretation of logistic regression coefficients

THE UNIVERSITY of EDINBURGH informatics

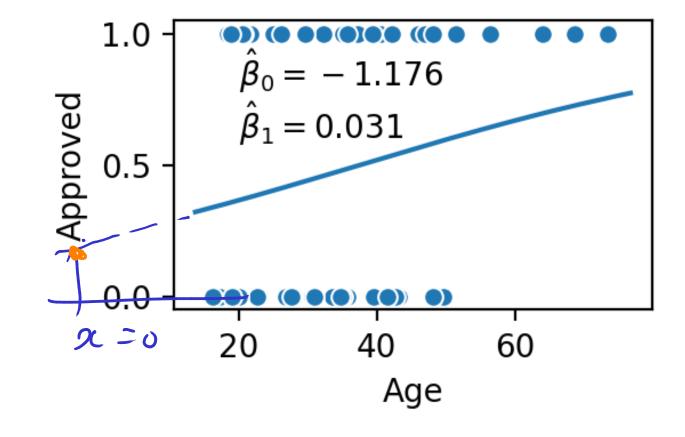
FOUNDATIONS OF DATA SCIENCE

Interpretation of $\hat{\beta}_{\sigma}$



$$f(\hat{s}_{0}) = f(-1.176)$$

= 0.236

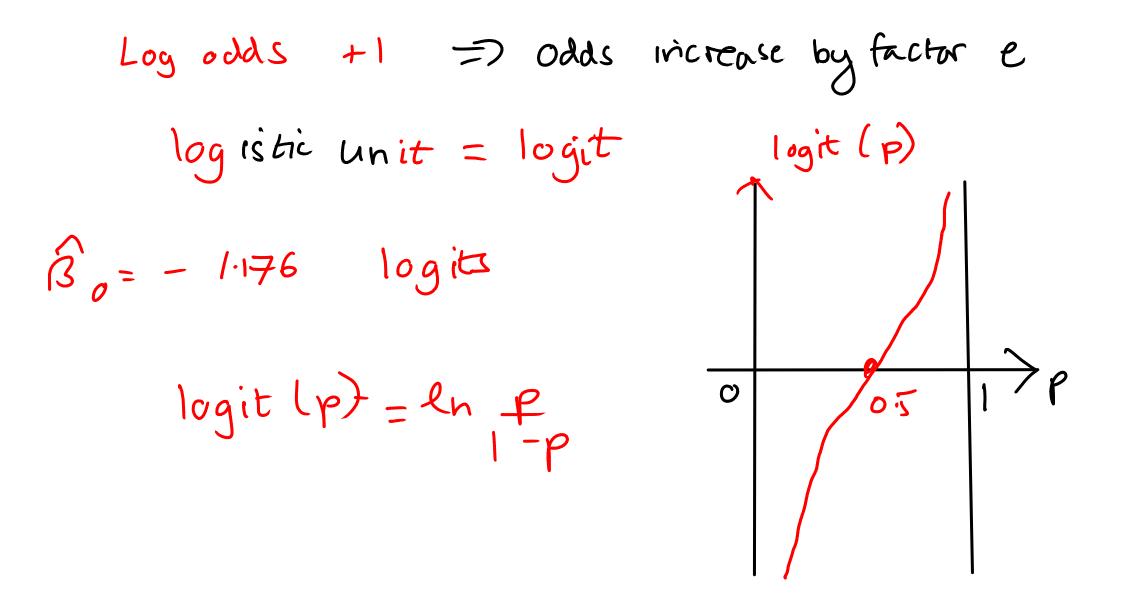


Log odds

$$Log Odds(success) = ln P(success)$$

 $= ln P(success) = ln P
 $I - P(success) = ln P$
 $I - P(success) I - p$
 $P = 0 dds Log odds$
 $P = 0 dds$$

Logit scale



Logistic regression in terms of log odds

Success
$$P(Y=1|x) = f(\beta_0 + \beta_1 x) = \frac{1}{1+e^{-\beta_0 - \beta_1 x}}$$

Followe $P(Y=0|x) = 1 - f(\beta_0 + \beta_1 x) = 1 - \frac{1}{1+e^{-\beta_0 - \beta_1 x}}$
 $= \frac{e^{-\beta_0 - \beta_1 x}}{1+e^{-\beta_0 - \beta_1 x}}$ (2)
Odds $P(Y=1|x) = \frac{1}{e^{-\beta_0 - \beta_1 x}} = e^{\beta_0 + \beta_1 x}$
Log odds $\ln \frac{P(Y=1|x)}{P(Y=0|x)} = \beta_0 + \beta_1 x = \log it (P(Y=1|x))$

Interpretation of B. $Odds(x) = e^{\beta_0 + \beta_x}$ $= e^{\hat{\beta}_{0}}e^{\hat{\beta}_{1}x}$

 $\pi = \{0, 1\}$

Preview

- Almost all pieces now in place to understand most of target paper
- Indicator variables
- Odds ratios
- Confidence intervals
- Last piece: Multiple logistic regression (next time)

Summary

- Logistic regression as a classification task

- Transforming linear regression into logistic regression: The sigmod function
- Odds, log odds, and odds ratios